69

Artificial intelligence

technical report

Author:
A. C.L1SBOA, PhD

2026-01-31

©) 2026 GAIA

69

Updates

19/12/2025 Adriano Chaves Lisboa

i. vector modular artificial intelligence math reasonably stable;
ii. implementation very uninstable.

01/01/2026 Adriano Chaves Lisboa

i. vector modular artificial intelligence math stable;
ii. Python implementation stable.

23/01/2026 Adriano Chaves Lisboa

i. vector modular artificial intelligence math stable;
i. Matlab implementation stable.

69

69

Contents

Updates
Contents
1 Introduction

2 Artificial intelligence
21 Model . . e

3 Tight universal parameterization

31 Basic problem statement
32 Modular polynomial . ..o e
321 Trdining . . . e e e
3211 Complexityanalysis oo i

3212 Continuousinputandoutput

3213 Recurrentinputandoutput oL

3214 Vectorinputandoutput L

3215 Vector modulartraining

3216 Efficient vector modular training L.

3217 Optimal vector architecture

3218 Tensorinputandoutput L

3219 Uncertaininputandoutput oo

32110 Incompleteinputandoutput L oL

32111 Roundofferrors

Examples . . .o

3221 Binaryinputandoutput oo

3222 Ternaryinputandoutput oL

4 Case studies

Fire detection

Detection o e

Segmentation

Businspection e

Nutangle e

10
10
10
12
13
13
13
13
13
13
13
14

43 Firstlanguage models e 16
431 Brazil .o 16

432 Braziland United States oo o 16

433 Brazil, United States, Spainand Israel 16

4.4 Psychology of discourse 16

A Code 16
Al Modular artificial intelligence 16
ATT Python e 17

Al2 Matlab . .o 31

Index 53

69

1 Introduction

First principles approach.

2 Artificial intelligence

2.1 Model

Artificial intelligence may be modeled in general as a function
y=fwzx), reXweWyeVY)

that allows mapping input = (in set X) to output y (in set Y) after being trained to
obtain parameters w (in set W) that minimize errors over a sample set of S input-
output pairs (Zs,7s) €S, s =0,...,.5 — 1. For instance, a linear parameterization would be
y=wo+wz=[1 2wzycR wecR2

2.2 Training

Training is an optimization problem in the form
w = argmin d(f(w, Zx), Jr) (2)

where d(y,9) : Y x Y — R is a distance measure between y € Y and ¢ € Y.

3 Tight universal parameterization

Definition 1 (consistent sample). A sample set S is consistent if the input samples & (where
(Zs,70s) € S) are unique (i.e. T5 # Ty, Vs #).

A consistent sample set S implies |Y/, [S| < |X].
Definition 2 (universal). A parameterization is universal when there is always a set of parameters to

achieve any input-output combination of consistent sample set S.

Definition 3 (tight). A parameterization is tight when the cardinality of parameter space equals to

the cardinality of input-output combinations, i.e. when |W| = |Y|X!.

69

3.1 Basic problem statement

When universality and tightness are the analysis focus, and also finite data, a unique
correspondence between input and output, and also the whole set of their combinations
and a tight parameter space to represent them, naturally lead to integer numbers due
to finiteness both in theory and in practice. Indeed, in practice, a continuous number is
typically approximated by an integer mantissa and exponent representation. So, the most
basic problem to be analyzed is based on integer set maps.

Given an input z € {0,...,X — 1} and an output y € {0,...,Y — 1}, how to define a
tight universal parameterization capable of learning any consistent training set (Zs, ¥s),
s=0,..,5-1?

There are YX possible input-output combinations, so that a universal parameterization
must have at least this amount of combinations in parameter space. Is it possible to define
a parameterization tight to this bound?

3.2 Modular polynomial

The modular polynomial parameterization is defined by

X-1
y= Z w;x' mod Y (3)
i=0
=1z 2. 25w modY (4
= P,w modY (5)

where the parameters w € W are tight (ie. [W| = Y¥) and they are universal only for
X =Y = M prime or a power of a prime (i.e. if the field is finite).

3.21 Training

The training of the modular polynomial parameterization model for a consistent sample
set is exact and given by the solution of a system of modular linear equations given by

M—1 771

1 2o i Ty o
1 & 22 L M i
wi=| " Lo _ mod M (6)
1 Zs1 Tg_ Gy Us-1
=P,y mod M (7

where P, is the polynomial space and for S < M (eg. a consistent sample set) the
solution is optimal on the least square error measure d = (P,w — §)1 (P,w — 9) using the

8

69

pseudo-inverse defined by
(PY P Py (®)

Since solving a system of equations involve divisions, the modulus M must be a prime
to allow training. Furthermore, when M > §, the last M — S elements of w are null, so that
it is enough to consider the first S terms of the M modular polynomial and solve a square
S x S system of linear equations.

3.2.11 Complexity analysis For a consistent sample set, the training time complexity is
given by the solution of the S x .S modular linear equation system (see Figure 1 for training
timing in practice), for S < M, ie. O(S?), and the storage complexity is given by the matrix
P, as O(5%log M) bytes. To store the parameters, at most S non-null values in modular M
algebra are necessary, i.e. O(Slog M) bytes of storage.

200 T T T T T m

150 - .

timing, ¢ (s)

100 - B
50 - B
0 b 1 1 1 1 1

0 200 400 600 800 1000 1200

Figure 1: Average training timing for 4 repetitions on random datasets. Fits on t < 157 x 10~% M2

[s].

Considering that b = log,s M bytes are needed to store a M modular residue and that a
computer has B bytes of available memory, the problem size is limited by

K?logys M < B (9

to be properly trained (eg. S = 2'® = 262,144 samples using modulus M = 25 would
require at least 2%4B~ 18TB of memory, which is currently infeasible to train, or 236B~ 69GB
of memory for K = 216 = 65,536 samples modulus M = 232 requiring about some hours of
processing training in a modern supercomputer).

3.2.1.2 Continuous input and output Any continuous input & € [2,2] can be mapped
into {0, ..., M — 1} using

V:—:ﬁ M
xr =

~ J mod M (10)
F—321+e€

69

and, similarly, any continuous output y € |7, §] can be mapped into {0, ..., M — 1} using

yo |20 M an
g—glJre

where € is an infinitesimal number, which in practice is the machine floating point represen-
tation error.

3.2.1.3 Recurrent input and output The output of a first entry may be the input in the
next time (i.e. a recurrent artificial intelligence)

Tep1 = Y(71) (12)

for a given xg, so that a sequence of up to M unique values may be obtained until a loop is
reached.

3.21.4 Vectorinputand output A vectorofn modular M variables & may be converted
to a single variable using scaling and shifting

" i X | ., N
= d Xt M, X =|VM 13
v ;{M—ll—keJ mod M, V| (13)
for concatenation of variables (ie. 2 =[0 0 0..] implies r=0.2=[(M—-1) 0 0..] implies
t=X—-1,2=[0 (M—1) 0..]implies z = (X —1)X, ..), where € is an infinitesimal number,
which is not necessarily universal or tight anymore; or without scaling (e.g. variables may
already be in the correct range) considering #; € {0, X — 1}

n i—1

=) & mod M (14)

1

i=1 J

for concatenation of variables (i.e. 2 =[0 0 0...] impliesz =0, ..2 =[(M —1) 0 0...] implies
r=X1—1,&=[0 (M —1) 0..] implies z = (X5 — 1)X, ..), which is still universal as long as
[T, X; < M and tight as long as [, X; = M.

3.215 Vector modular training Algorithm 1 depicts how to train a N-vector modular
artificial intelligence. Data exposure for inference and performance improvements are
omitted for simplicity. To cope with multiple inputs, each input is scaled to a specific range
in X and then combined to other inputs like they were indexes of a N-dimensional matrix
being converted to a single index related to elements position in memory. The information
lost during scaling is refined in further layers, as shown in Figure 2. This approach tackles
most significant parts of the number first and the number is refined as needed to not lose
information.

10

69

Algorithm 1 Training of a vector modular artificial intelligence.

Input

(£s,95) €S input &5 € {0,..., M — 1} output §s € {0,...., M — 1}, s =0, ...,.S — 1, sample set

G € N input group size in {2,3,4..., |log, M |}

Ovutput
weW trained parameters

Ay € N° training error

1 Xp U{fs} > starting input set
2: 0+ 0) > layer counter
3 0 < log(M — 1) > maximum refinement layer
4 Ay g > starting output error
50 W<« 0 > starting parameter set
6: while X, # () do

{everg combination of |X,| choose G, G < |X/| .
7: Gy + > input groups
{(0, ..., |Xe| = 1)}, otherwise
U {2:G mod M}, ¢<landn>1
8: Xpg1 ¢ 1 €% > refined input
0, otherwise

9. forneGyne{0,..,]X]}, g =min{G, |X,|} do

10: Xy L%J + 0. 92 (M mod g),Vg =0,..,9—1 > input ranges
1, otherwise

1 T <—§§ L Tong Xg J ﬁX/ Vs > input grouping (14)

' SR By s put grouping
12 P e <+ ¢ mod M,Vs,e=0,...,5 -1 > polynomial space (6)
13: Ayl p Argin N Ayg, Vs > consistent error, skip training if Ay’ =0
14; w 4— P‘lA;;’ r;od M > incremental training (/)
15: Ay + Ay — Pw > output error reduction, stop if Ay =0
16: W« W H{w} > append parameters
17: end for
18: L+ 0+1 > increment layer

19: end while

Algorithm 2 allows to train with a reduced modulus in order to avoid Incomplete input

and output errors. The refinement strategy (shown in Figure 2) is analogous to the one

used in the vector modular training Algorithm 1: cope with the most significant parts first

and then refine as needed. In order to take maximum advantage of this strategy, the input

comb

ination of vector training must be such that lower refined inputs are treated first.

1

69

2 rlogzM 1

2rlog2M1-2
M
I
—_—
[log,M1-3
208

Figure 2: Number refinement for M’ = 2. In order to keep the number in the correct range,
either i. the number is scaled to a proper specific range X (see line 11 in Algorithm 1), or ii. the
M’ power next to M 7-remainder (¥ = [log,,;» M) of the number multiplied by M'" is divided
by M'"~! (see line 3 in Algorithm 2).

Algorithm 2 Fixed modulus training of a vector modular artificial intelligence.

Input
(#s,795) €S input 25 € {0,..., M — 1} output g, € {0,.... M — 1}, s =0, ..., S — 1, sample set
G € N input group sizein {2,3,4..., [logy, M | }
M' e N fixed modulus, a prime number M’ < M

Output
weW trained parameters
Ay € N° training error
N

13« > starting refined input
2: forr=0,1,..., [log,p M]—1do

SMIT Ml]'log 1 M
3: 2 |7 ’ MI,IFIOS T lM H > refined dataset
08/ -
4. end for
5. W, Ay <+ MAI <U{(§c;,g5)}, G) > training (Algorithm 1)

3.2.1.6 Efficient vector modular training Given# € {0,..., X —1}¥*¥ and § € {0, ..., Y —
1}5, find a group n € {0,..,N — 1}, G < N, such that § # 0, where §, = min s,

s’ xs=xy

G-1
Ts = Z Tsn, X7, exploring as few combinations as possible among the possible N choose
9=0

G.

12

69

3.2.1.7 Optimal vector architecture The number size in a G-group N-vector M-
modular artificial intelligence of is given by

llogg (V1)) y
W:MUaUS Z u’r‘auT"i‘l:?T
r=0

so that the higher N and M are, the higher W is, and the higher G is, the lower W is.

(up +3),up =N (15)

3.21.8 Tensor input and output For N-dimensional tensor input variables x; index
by i, € {1,...,m.}, ¢ = 1,...,N, using Einstein notation, a modular polynomial convolution
parameterization

M-1
i = > Wima; mod M 16)
m=0
where
i'(iey jo) = Je+ic— 1, ic € {1,...;nc}t je €{1,..ome —ne+ 1} ce {1,..., N} a7

may be a good choice for reducing the number of parameters or output size, but the
parameterization becomes not universal and not tight. Notice that when n. = m,, Ve,
the modular polynomial convolution parameterization degenerates into the conventional
modular polynomial parameterization.

3.2.1.9 Uncertain input and output An exact training may be challenging to avoid
overfitting to noisy data, i.e. uncertain input and output, as shown in Figure 3.

T T T T T T
>100f

2

5 50 b
o

0 20 40 60 80 100 120
input, x

Figure 3: An exact model follows whatever the training data is (complete data for & €
{0,1,...,126}).

3.21.10 Incomplete input and output Interpolation and extrapolation are also a chal-
lenge, as shown in Figure 4.

3.2.111 Round off errors

3.2.2 Examples

3.2.2.1 Binary input and output For z,y € {0,1} a universal parameterization would be

y=wo+wz mod?2, w€{0,1},wye {0,1} (18)

13

69

1
>
30
3
1 L L L L L L
0 20 40 60 80 100 120
input, x
T T T T
>100
§_
o
0 | | | | | 1
0 20 40 60 80 100 120
input, x
2 T
>
= 1F
>
g /
30 1
_1 1 1 1 1 1 1
0 20 40 60 80 100 120
input, x

Figure 4: A 0-parameter model for & = (0,127) and § = (0, 0) (top), and a 2-parameter model
for & = (0,127) and § = (0, 1) (center) reveals the sensitivity and interpolation problems, which
is solved with a low fixed modulus M = 2 (bottom).

so that

i. w=1[0,0] forz =[0,1] and g = [0,0];
ii. w=1[0,1] forz =[0,1] and g = [0, 1];
ji. w=[1,1] forz = (0,1} and 5 = [1,0];

iv. w=[1,0] for =[0,1] and g = [1, 1];

and the parameterization is universal and tight.

3.2.2.2 Ternaryinputandoutput Forz,y € {0,1,2} auniversal parameterization would
be
y = wo + w1z + woxr® mod 3, wsy € {0,1,2},w; € {0,1,2},wo € {0,1,2} (19

so that

i. w=10,0,0] for 2 =1[0,1,2] and § = [0, 0,0];
ii. w=1[0,1,2] for z =[0,1,2] and § = [0, 0, 1];
jii. w=10,2,1] for & =1[0,1,2] and g = [0,0, 2J;
iv. w=10,2,2] for z =1[0,1,2] and g = [0,1,0];
v. w=[0,0,1] forz =10,1,2] and g = [0, 1, 1];

vi. w=1[0,1,0] for 2 =[0,1,2] and § = [0, 1,2];

14

\

viii.

Xi.
Xii.
Xiii.
XiV.
XV.
XVi.
XVii.
XViii.
XiX.
XX.
XXi.
XXil.
XXiil.
XXV,
XXV.
XXVi.
XXVil.

and the parameterization is universal and tight.

69

w=10,1,1] for 2 = [0,1,2] and § = [0,2,0];
w=10,2,0] for 2 =[0,1,2] and § = (0,2, 1];
ix. w=1[0,0,2] for & =[0,1,2] and § = [0, 2, 2];
.w=11,0,2] for 2 =10,1,2] and § = [1,0,0];
w=1[1,1,1] for = [0,1,2] and § = 1,0, 1J;
w=1[1,2,0] for =1[0,1,2] and § = [1,0, 2];
w=1[1,2,1] for 2 =[0,1,2] and § = [1,1,0];
w=1[1,0,0] for 2 =1[0,1,2] and § = [1,1,1];
w=[1,1,2] for# =[0,1,2] and § = [1,1, 2];
w=1[1,1,0] for # = [0,1,2] and § = [1,2,0];
w=1[1,2,2] for 2 =1[0,1,2] and § = [1,2,1];
w=1[1,0,1] for & =[0,1,2] and § = [1,2,2];
w=1[2,0,1] for & = [0,1,2] and § = [2,0,0];
w=12,1,0] for £ =[0,1,2] and § = [2,0, 1];
w=12,2,2] forz =1[0,1,2] and § = [2,0, 2];
w=12,2,0] for 2 =1[0,1,2] and § = [2,1,0];
w=12,0,2] forz =1[0,1,2] and § = [2,1,1];
w=1[2,1,1] for £ =[0,1,2] and § = [2,1, 2];
w=12,1,2] for £ =[0,1,2] and § = [2,2,0];
w=12,2,1] for 2 =1[0,1,2] and § = [2,2,1];

w =[2,0,0] forz =1[0,1,2] and § = [2,2,2];

15

69

4 Case studies

4.1 Fire detection
411 Detection
412 Segmentation
4.2 Bus inspection
421 Nutangle

4.3 First language models

i. concepts development based on physical world and its measures;

ii. connections between concepts to create new concepts and reduce amount of infor-
mation;

ii. switch flips.
431 Brazil
4.3.2 Braziland United States
4.3.3 Brazil, United States, Spain and Israel

4.4 Psychology of discourse

A Code

A1 Modular artificial intelligence

Modular algebra can be conveniently implemented by a container for residue or con-
gruence class, overloading operators in order to use conventional algorithms. Most of
operators are simply common algebra with a remainder at the end, with a notable ex-
ception for division using Euclidean algorithm and a careful power operator to avoid
overflow.

Many spaces are created to allow efficient training and tests, including truth space,
polynomial space, and interleaved polynomial space.

16

69

The training comprises a simple but hard to code algorithm.

Al

firs
test
crit

H= 4 W

clue

Python

t principles
driven development
erion: self contained coded

: Grok has accuratly more detailed algorithms

'''References:

[1] A.

import
import
import
import
import
import

np.set
np.set

C. Lisboa. "Artificial intelligence",

numpy as np
sys

io

time

json

copy

_printoptions (threshold=sys.maxsize)

technical report, Gaia,

_printoptions (precision=0, suppress=True)

modular algebra

class

modular_residue:

Construction.
def _ _init_ (self, r, M, b=None):

Args:
r (numpy array of int): residue
M (int): modulus

b (bool, optional): modulus is prime indicator

Returns:

Construct a modular residue number.

(modular_residue): a modular residue number

Setup.
self._modulus = M
self._residue = r

self._is_prime = is_prime (M) if b is None else Db

Read only attributes.

def

def

def

def

O
def

residue (self) :
return self._residue

dtype (self) :
return str(self._residue.dtype)

modulus (self) :
return self._modulus

is_prime(self):
return self._is_prime

perators.

_ _setattr_ (self,name,value) :
Error check.

if name == '_residue':

if not isinstance(value,np.ndarray)

or str(value.dtype)

not in

gaiasd.com/AI.pdf,

['int8",

(default is a prime predicate)

"intl6',

2026.

"int32',

17

'inte6e4"']

69

raise ValueError ('Type for residue must be signed integer')
value %= self._modulus
elif name == '_modulus':
if not isinstance(value, int):
raise ValueError ('Modulus must be an integer')
elif name == '_is_prime':
if not isinstance(value,bool):
raise ValueError ('Is prime indicator must be a boolean')

else:

raise ValueError ('Non existing attribute name \'{}\''.format (name))
Setup.
super () .__setattr__ (name,value)

def __add__ (self, other):
Error check.
if isinstance(self,modular_residue)

raise ValueError ('Operand modulus must be the same')

Extract info.

bp = self._is_prime if isinstance(self,modular_residue) else other._is_prime # is prime indicator
a = self._residue if isinstance(self,modular_residue) else self # first operand

b = other._residue if isinstance (other,modular_residue) else other # second operand

M = self._modulus if isinstance (self,modular_residue) else other._modulus # modulus

Modular sum.
return modular_residue (a+b, M, bp)

def __ _radd__ (self,other):
return self.__add__ (other)

def __neg__ (self):
return modular_residue (self._modulus-self._residue, self._modulus, self._is_prime)

__sub__(self, other):

Error check.
if isinstance (other,modular_residue) and self._modulus != other._modulus:

raise ValueError ('Operand modulus must be the same.')

def

Extract info.

bp = self._is_prime if isinstance(self,modular_residue) else other._is_prime # is prime indicator
a = self._residue 1if isinstance(self,modular_residue) else self # first operand
b = other._residue if isinstance (other,modular_residue) else other # second operand

self._modulus if isinstance(self,modular_residue) else other._modulus # modulus

M

Modular sum.
return modular_residue (a+M-b, M, bp)

def _ _rsub__ (self,other):
return —(self._ _sub__ (other)) # there is some switch flip in this overload...

def _ mul_ (self, other):

Error check.
if isinstance (other,modular_residue) and self._modulus != other._modulus:

raise ValueError ('Operand modulus must be the same')

Extract info.
bp = self._is_prime if isinstance (self,modular_residue) else other._is_prime # is prime indicator

a = self._residue if isinstance(self,modular_residue) else self # first operand
b other._residue if isinstance (other,modular_residue) else other # second operand
M = self._modulus if isinstance(self,modular_residue) else other._modulus # modulus

Modular multiplication.

18

and isinstance (other,modular_residue) and self._modulus != other._modul

69

return modular_residue (axb, M, bp)

def _ _rmul__ (self, other):
return selfxother

def _ _matmul__ (self, other):
Error check.

if isinstance (other,modular_residue) and self._modulus != other._modulus:
raise ValueError ('Operand modulus must be the same')
if len(self._residue.shape) != 2 or len(other._residue.shape) != 2:

raise ValueError ('Operands must be matrices')

Extract info.
bp = self._is_prime if isinstance(self,modular_residue) else other._is_prime # is prime indicator

a = self._residue if isinstance(self,modular_residue) else self # first operand
b = other._residue if isinstance (other,modular_residue) else other # second operand
M = self._modulus if isinstance(self,modular_residue) else other._modulus # modulus

Modular multiplication.
return modular_residue (a@b, M, bp)

def _ _mod__ (self, other):
Error check.
if not isinstance (self,modular_residue) :
raise TypeError ('Operand must be modular residues')
if not isinstance (other,int):

raise TypeError ('Modulus must be an integer')

Extract info.
= self._residue # residue
M = other # modulus

©

New modulus
return modular_residue (a%M, M, is_prime (M))

def _ _pow__ (self, other):
Error check.

if isinstance (other,modular_residue) and self._modulus != other._modulus:
raise ValueError ('Operand modulus must be the same')
if isinstance (other,np.ndarray) and other.dtype != self._residue.dtype:

other.astype (self._residue.dtype)

Extract info.

bp = self._is_prime if isinstance(self,modular_residue) else other._is_prime # is prime indicator
a = self._residue if isinstance(self,modular_residue) else self # first operand

b = other._residue if isinstance (other,modular_residue) else other # second operand

M = self._modulus if isinstance(self,modular_residue) else other._modulus # modulus

s = a.shape if not isinstance (b,np.ndarray) or sum(a.shape) > sum(b.shape) else b.shape # shape

Efficient power.
if M==1:

r = np.zeros(s)
elif self._is_prime:

r= (a*x (b% (M-1))) $ M
else:
r = np.ones(s,dtype=a.dtype) # power
ar = (a%M) xnp.ones (s,dtype=a.dtype)# power basis

br = b*np.ones(s,dtype=a.dtype) # power exponent
while np.any(br > 0):

ib = np.where((br % 2) > 0)[0]

r[ib] x= ar[ib]

r(ib] %= M

ar x*= ar

19

69

o

ar %= M

br //= 2
r[np.logical_and(a==0,b==0)]
r[np.logical_and(a==0,b!=0)]
return modular_residue(r, M, bp

Il
- o+

def __ _rpow__ (self, other):
if isinstance (other, int) :
other = modular_residue (np.array([other],dtype=self._residue.dtype), self._modulus, self._is_prime)
else:
raise TypeError ('Invalid basis type')
return other.__pow__ (self) # there is some switch flip in this overload...

def _ truediv__ (self, other):
Error check.
if isinstance (other,modular_residue) and self._modulus != other._modulus:
raise ValueError ('Operand modulus must be the same')
if isinstance (other,np.ndarray) and other.dtype != self._residue.dtype:
other.astype(self._residue.dtype)

Extract info.
bp = self._is_prime if isinstance(self,modular_residue) else other._is_prime # is prime indicator
a = self._residue if isinstance(self,modular_residue) else self # first operand
b = other._residue if isinstance (other,modular_residue) else other # second operand
M = self._modulus if isinstance(self,modular_residue) else other._modulus # modulus
s = a.shape if not isinstance (b,np.ndarray) or sum(a.shape) > sum(b.shape) else b.shape # shape
ns = len(s) # tensor dimension
if a.shape != b.shape:
st = np.array([l]*ns,dtype=int)
for ins in range(ns):
if a.shapel[ins] != b.shape[ins]:
ds = np.array([l]xns,dtype=int)
if a.shapel[ins]==1:
ds[ins] = b.shape[ins]
a = np.tile(a,tuple(ds))
elif b.shape[ins]==1:

ds[ins] = a.shape[ins]
b = np.tile(b,tuple(ds))
else:

raise ValueError ('Inconsistent operant sizes')
dtype = a.dtype if isinstance(a,np.ndarray) else b.dtype
n = np.prod(s)

Efficient divide: Euclidean algorithm.

bm = np.vstack (((b.reshape(-1)%M) .astype('int64'"), np.tile(np.array ([M],dtype="int64"), (n)))) # put in ranc
x = np.vstack ((np.zeros((n),dtype="int64"),np.ones ((n),dtype="int64")))
iin = np.where (bm[1l,:]!=0) [0]

while sum(iin.shape) > 0:
Euclidean expansion.
g = bm[0,iin] // bm[l,iin] # quotient

bm[:,1iin] = np.vstack((bm[1l,iin], bm[0,iin]%bm[1l,1iin]))
x[:,1in] = np.vstack ((x[1l,iin]-g*x[0,iin],x[0,1iin]))
iin = iin[bm[1l,iin] !=0]

Error check.
if M!=1 and np.any(np.logical_and(bm[0,:]!=1,b.reshape(-1)!=0)):
raise ValueError ('Divisor and modulus must be coprime')

Output arguments.
return modular_residue((np.array([a],dtype=dtype) if isinstance(a,int) else a)+*x[1l,:].reshape(s), M, bp)

def _ rtruediv__ (self, other):
if isinstance (other, int) :

69

other = np.array([other],dtype=self._residue.dtype)
if isinstance (other,np.ndarray) :

return modular_residue (other, self._modulus, self._is_prime) / self._residue # there is some switc
else:

raise TypeError ('Not implemented operator for these operand types')

def _ floordiv__ (self, other):
return self.__truediv__ (other)

def _ rfloordiv__ (self, other):
return self._ floordiv__ (other) # there is some switch flip in this overload... and every non-commute

def __eqg (self, other):
a = self._residue if isinstance(self,modular_residue) else self # first operand
b = other._residue if isinstance (other,modular_residue) else other # second operand
return a ==

def _ _ne_ (self, other):
a = self._residue if isinstance(self,modular_residue) else self # first operand
b = other._residue if isinstance (other,modular_residue) else other # second operand
return a != b

def __1t_ (self, other):
a = self._residue if isinstance(self,modular_residue) else self # first operand
b = other._residue if isinstance (other,modular_residue) else other # second operand
return a < b

def _ le_ (self, other):
a = self._residue if isinstance(self,modular_residue) else self # first operand
b = other._residue if isinstance (other,modular_residue) else other # second operand
return a <= b

def __gt__ (self, other):
a = self._residue if isinstance(self,modular_residue) else self # first operand
b = other._residue if isinstance (other,modular_residue) else other # second operand

return a > b

def __ge__ (self, other):
a = self._residue if isinstance(self,modular_residue) else self # first operand
b = other._residue if isinstance (other,modular_residue) else other # second operand
return a >= b

def __getitem__ (self, key):
return modular_residue (self._residuelkey], self._modulus, self._is_prime)

def __setitem__ (self, key, value):
value = value._residue if isinstance (value,modular_residue) else value
self._residuelkey] = value

def _ _str__ (self):
d = int (np.ceil (np.logl0 (self._modulus)))

fmt = 'mod\n{{:{:d}d}}"'.format (d+1)
if self._is_prime:
fmt += ' (prime) '
fmt += ' ({})'.format (str(self._residue.dtype))

return print_to_string(self._residue) + fmt.format (self._modulus)
def tile(self,s):
r = np.tile(self._residue, s)

return modular_residue(r, self._modulus, self._is_prime)

def shape (self):
return self._residue.shape

21

69

def len(self):
return len(self._residue)

def reshape (self, xargs) :
r = self._residue.copy()
return modular_residue (r.reshape (xargs), self._modulus, self._is_prime)

def hstack (xargs) :
return modular_residue (np.hstack (tuple([arg._residue for arg in args])), args[0]._modulus, args[0]._is_prin

def vstack (xargs):
return modular_residue (np.vstack (tuple([arg._residue for arg in args])), args[0]._modulus, args[0]._is_prin

def argmax (self, xargs) :
return np.argmax (self._residue, xargs)

def min(self, xargs) :
if args:
return modular_residue (np.min(self._residue, xargs),self._modulus,self._is_prime)
else:
return np.min(self._residue)

def max(self, xargs):
if args:
return modular_residue (np.max (self._residue, xargs),self._modulus,self._is_prime)
else:
return np.max(self._residue)

def transpose(self):
return modular_residue (np.transpose(self._residue),self._modulus,self._is_prime)

def astype(self,dtype):
return modular_residue(self._residue.astype (dtype),self._modulus,self._is_prime)

def enumerate (self, index=0) :
return enumerate (self._residue, index)

def print_to_string(xargs, =**kwargs):
output = io.StringIO()
print (xargs, file=output, x*kwargs)
contents = output.getvalue ()
output.close ()
return contents

Spaces.
def truth_space(S,M,dtype="int64") :
Every possible arange of S samples in modulus M, for universality and tightness tests (complete output space
y = np.zeros((0,1))
for 1 in range(S):
y = np.vstack ((np.tile(np.arange (0,M) .reshape(-1,1), (1,Mx*i)) .reshape(-1),np.tile(y, (1,M))))
return modular_residue (y.astype (dtype) ,M)

def polynomial_space(x,E,S):
Power of modular residue samples at given exponents, for single input training.
P = modular_residue (np.tile(x.residue () .reshape(-1,1), (1,S)),x.modulus(),x.is_prime())
if isinstance (E,modular_residue) :
E = E.residue()
for i, e in enumerate (E) :
Pl:,1] **= e
return P

22

69

Training.
def mles_solve (A,Db):
Solve modular linear equation system Ax = b using Gaussian elimination.

Error check.
if not isinstance (A,modular_residue) or not isinstance (b,modular_residue) :
raise TypeError ('Tensors must be modular residues')

if len(A.shape()) != 2 or len(b.shape()) != 2:
raise ValueError ('Tensors in linear system must be matrices')
if A.shape() [0] != b.shape() [0]:

raise ValueError ('Matrices must have the same number of rows')

Cardinalities.
M,N = A.shape() # number of rows and inputs
if M > N:
raise ValueError ('Over determined system of equations')
M,0 = b.shape() # number of rows and outputs

Gauss elimination algorithm.
= A.hstack (b) # tableau
= np.arange (0,M) # pivot rows
or k in range (M) :
i =%k + Tlplk:],k].argmax() # pivot row
plkl, pli]l = pli], plk] # swap pivot to current iteratino position
Tlplkl,k:] /= Tlplk]l,k:k+1] # normalize pivot row
Tlplk+1l:],k:] —-= T[plk]::M, k:]+T[p[k+1:],k:k+1] # elimination

'O o

Backward substitution.
T = T[p,:] # sort tableau
x

= T[:,N:] if M==N else T[:,N:].vstack (modular_residue (np.zeros (N-M,0),A.modulus(),A.is_prime(),dtype=E2
for k in range(0,M-1):

x[0:M-k-1,:] -= T[0:M-k-1,M-k-1:M-k]#*x[M-k-1:M-k, :]
return x

def fit (xh,yh,M=None, X=None, Eh=None, dtype=None, window=None) :
''"' Fit input to output using modular artificial intelligence model.

Args:
xh (numpy array or moduluar_residue): input samples
yh (numpy array or moduluar_residue): output samples
M (int, optional): specify modulus
X (tuple of int, optional): specify input range
Eh (tuple of numpy array or modular_residue): specify probing exponents

dtype (str, optional): specify signed integer data type

Retrun:
(dict) : modular artificial intelligence with fields:

dtype (str): data type

exponents (moduluar_residue): probing exponents for training space

input (dict): input configuration with fields:
encoder (function): input encoder
minimum (numpy array): input minimum values
maximum (numpy array): input minimum values
size (tuple of int): input size

model (string): AI model

modulus (int): modulus

output (dict): output configuration with fields:
decoder (function): output decoder
minimum (numpy array): output minimum values
maximum (numpy array): output minimum values

23

69

size (tuple of int): output size
parameters (modular_residue): parameters for inference
samples (int): number of samples
spacer (function): create space for training
time (float): elapsed training time [s]

Error check.
if not isinstance (xh, (np.ndarray,modular_residue)) :
raise TypeError ('Input must be a numpy array or a modular residue')
if not isinstance (yh, (np.ndarray,modular_residue)) :
raise TypeError ('Output must be a numpy array or a modular residue')
if Eh is not None and not isinstance (Eh, (np.ndarray,modular_residue)) :
raise ValueError ('Probing exponents must be in a tuple of either numpy arrays or modular residues')
sx = xh.shape if isinstance (xh,np.ndarray) else xh.shape ()
if not sx:
raise ValueError ('Empty input data not suppoted')
sy = yh.shape if isinstance(yh,np.ndarray) else yh.shape()

if not sy:
raise ValueError ('Empty output data not suppoted')
if sx[0] != sy[0]:

raise ValueError ('Inconsistent number of input and output samples')
if M is not None and not isinstance (M, int):
raise TypeError ('Modulus must be an integer')
if M is not None and M < 1:
raise ValueError ('Modulus must be a positive integer')
if isinstance (xh,modular_residue) and isinstance (yh,modular_residue) and xh.modulus () != yh.modulus():
raise ValueError ('Input and output modulus must be the same')
if X is not None and (not isinstance (X, (tuple,list,np.ndarray)) or not all([isinstance(x,int) for x in X])):
raise TypeError ('Input range must be a tuple of integers')

Cardinalities.

if len(sx) == 1 or sx[1l]==1:
Scalar model.
N = (1,) # number of input variables
O = (1,) if len(sy)==1 else (syl[l],) # number of input variables

xh = xh if len(sx)==2 else xh.reshape(-1,1) # canonical output form
yh = yh if len(sy)==2 else yh.reshape(-1,1) # canonical output form

S = sx[0] # number of samples
model = '"MAI' # AI model
elif len(sx) == 2:
Vector model.
S = sx[0] # number of samples
N = (sx[1],) # number of input variables
O = (1,) if len(sy)==1 else (sy[l],) # number of input variables
yvh = yh if len(sy)==2 else yh.reshape(-1,1) # canonical output form
model = 'VMAI' # AI model
else:

raise ValueError ('Unsupport data')
if M is None:
if isinstance (xh,modular_residue) :
M = xh.modulus ()

xmin = np.array([xh[:,n].min() for n in range(N[0])]) # minimum input value
xmax = np.array([xh[:,n].max() for n in range(N[0])]) # maximum input value
if isinstance (yh,modular_residue) :
ymin = np.array([yh[:,0].min() for o in range(O[0])]) # minimum output value
ymax = np.array([yh[:,0].max() for o in range(0O[0])]) # maximum output value
else:
ymin = np.array([np.min(yh[:,0]) for o in range(0[0])]) # minimum output value
ymax = np.array([np.max(yh[:,0]) for o in range(O[0])]) # maximum output value

elif isinstance(yh,modular_residue):
M = yh.modulus ()
xmin = np.array([np.min(xh[:,n]) for n in range(N[0])]) # minimum input value

if

if

if

if

if

if

69

xmax = np.array([np.max(xh[:,n for n in range (N[0])]) # maximum input value
ymin = np.array([yh[:,0].min() for o in range(O[0])]) # minimum output value
ymax = np.array([yh[:,0]. for o in range(0O[0])]) # maximum output value
else:
xmin = np.array([np.min(xh[: for n in range (N[0])]) # minimum input value
xmax = np.array([np.max(xh[: for n in range (N[0])]) # maximum input value
ymin = np.array([np.min(yh[: for o in range(0[0])]) # minimum output value
ymax = np.array([np.max(yh[: for o in range(0[0])]) # maximum output value
M = next_prime (max ([np.prod(xmax+l),np.max (ymax+1l)])) # modulus
elif not is_prime (M) :
raise ValueError ('Modulus must be a prime number')
S <= N[0]:
raise ValueError ('Not enough samples')
S > M:
raise ValueError ('Too many samples')
X is None:
X = xmax + 1 # input range
Type definition.
if not isinstance (xh,modular_residue) :
xh = modular_residue (xh,M, True)
np.unique (xh.residue (), axis=0) .shape[0] < S:
raise ValueError ('Input must be unique'
not isinstance (yh,modular_residue) :
yh = modular_residue (yh,M, True)
dtype is None:
dtype = 'int64'
if M < 2%%7:
dtype = 'int8'
elif M < 2%x15:
dtype = 'intlé6'
elif M < 2%x31:
dtype = 'int32'
elif dtype not in ['int8', 'intlé6', 'int32', 'int64']:

xh.

xh

vh.

vh

xmin
xmax
ymin.
ymax.
if not isinstance (X, np.ndarray) :
np.array (X, dtype=dtype)

raise ValueError ('Data type must be a signed integer')

astype (dtype)
%= M

astype (dtype)
%= M

.astype (dtype
.astype (dtype
astype (dtype
astype (dtype

X =

Polynomial powers.

if

Eh is None:

Exponent definition.

Eh =

else:

Error check.
E = Eh $ M
if E.shape[0]

= 3:

modular_residue (np.arange (S,dtype=dtype) ,M, True)

raise ValueError ('There must be a unique probing exponent for each sample')

Eu =
if Eu.shapel[0]

np.unique (E)
!= E.shape[0]:

raise ValueError ('Probing exponents must be unique in modulus')

Eh =

Training.

t
Cx

= lambda x,

time.perf_counter();

modular_residue (E.astype (dtype),M, True)

starting training time
M=M, N=N, X=X, dtype=dtype

encode (x,M, N, X, dtype)

vector input encoder

25

69

Cy = lambda y : decode(y) # output decoder

Px = lambda x, E=Eh, S=S : polynomial_space(x,E,S) # input polynomial
P = Px(Cx(xh)) # polynomial coefficients

w = mles_solve(P,yh) # training itself

t = round(time.perf_counter() - t,6) # elapsed training time

Output arguments.

return {'model': model, 'parameters': w, 'timing': t, 'modulus': M, 'samples': S, 'dtype': dtype,
'spacer': Px, 'exponents': Eh,
'"input': {'encoder': Cx, 'minimum': xmin, 'maximum': xmax, 'size': N},
'output': {'decoder': Cy, 'minimum': ymin, 'maximum': ymax, 'size': O}

def encode (x,M,N, X,dtype) :
x = x.astype (dtype)
x = x 1if isinstance (x,modular_residue) else modular_residue (x,M, True)
if len(x.shape()) ==
x = x.reshape(-1,1)
return modular_residue (

np.sum(x.residue () *» (np.cumprod (np.append(1,X[0:-1])) .reshape(l,-1)),axis=1),
x.modulus (),
x.1s_prime()

def decode(y) :
return y

def infer (x,model) :

''"'" Modular artificial intelligence inference.
Args:
x (numpy array or modular_residue): input
model (dict): MAI model

Returns:
(modular_residue) : model output given the input

MAI inference.

return model['output']['decoder'] (model['spacer'] (model['input']['encoder'] (x))@model ['parameters'])

def save_model (model, file=None) :
''"" Convert MAI model to JSON string.

Args:
form (dict): model dictionary
file (str, optional): file name to save JSON string (defaut None)

Returns:
(str): JSON string for the model

Data type conversion.

model = copy.deepcopy (model) # avoid changing model outside this function
model['parameters'] = model['parameters'].residue () .astype(int) .tolist ()
model['exponents'] = model['exponents'].residue() .tolist ()
model['input']['minimum'] = model['input']['minimum'].tolist ()

model ['input'] ['maximum'] = model['input']['maximum'].tolist ()

model ['output'] ['minimum'] = model['output']['minimum'].tolist ()

model ['output'] ['maximum'] = model['output']['maximum'].tolist ()

del model['input']['encoder']

del model['output']['decoder']

del model['spacer']

26

69

Form dictionary o JSON string.
json_string = json.dumps (model, indent=4, ensure_ascii=False)

Save model JSON to file.
if file is not None:
with open(file, 'w') as fid:
json.dump (model, fid, indent=4, ensure_ascii=False)

Output arguments.
return json_string

def load_model (file):
''"'" Load MAI model from file.

Args:
file (str): file name to load JSON string into dictionary

Returns:
(dict) : model dictionary

Load model dictionary from JSON file.
with open(file, 'r') as fid:

Load model from file.

model = json.load(fid)

Data type conversion.
dtype = model['dtype'] # data type
M = model['modulus'] # modulus
S = model|['samples'] # number of samples
model['parameters'] = modular_residue (

np.array (model['parameters'],dtype=dtype),

MI

True
)
model['exponents'] = modular_residue (np.array (model['exponents'],dtype=dtype),M, True)
E = model['exponents']
for end in ['input', 'output']:

for limit in ['minimum', 'maximum']:

model [end] [1imit] = np.array(model[end] [limit],dtype=dtype)

xmin = model['input']['minimum']
xmax = model['input']['maximum']
ymin = model['output']['minimum']
ymax = model['output']['maximum']
model['input']['size'] = tuple(model['input']['size'])
N = model['input']['size']
model['output'] ['size'] = tuple(model['output']['size'])
O = model['output']['size']
model['spacer'] = lambda x, E=E, S=S : polynomial_space (x,E,S)
model['input'] ['encoder'] = lambda x, M=M, N=N, X=xmax+l, dtype=dtype : encode (x,M,N, X,dtype)
model ['output'] ['decoder'] = lambda y : decode(y)

Output arguments.
return model

Prime numbers.
def is_prime(n):
Is prime predicate.
if n < 4:
return True

27

imax = int(np.ceil (np.sqgrt(n)))
for 1 in range (2, imax+1):
if (n % i) ==
return False
return True

def next_prime(n):
Find next prime given a starting number.
while not is_prime(n):
n += 1
return n

Unit tests.
def test_wrong_instance() :
try:
modular_residue([1,2],2)
assert False
except:
pass

def test_wrong_instance():
try:
for dtype in ['int8', 'intl6', 'int32', 'int64']:
modular_residue (np.array([1l,2],dtype=dtype), 2, True)
except:
assert False

def test_attr():
a = modular_residue(np.array([0,1,2,3,4,5],dtype="int64"'),5,True)

assert np.all(a[l:3] == np.array([1l,2],dtype="int64"))
afl::2] = 2
assert np.all(a == np.array([0,2,2,2,4,2],dtype="1int64"))

def test_sum():
a = modular_residue(np.array([0,1,2,3,4,5],dtype="int64"'),5,True)
b = modular_residue (np.array([2,2,2,2,2,2],dtype="int64"),5, True)
¢ = modular_residue (np.array([2,3,4,0,1,2],dtype="int64"),5,True)

assert np.all(a + == C)
assert np.all(a + b._residue == c)
assert np.all(a + == C)
assert np.all(2 + a == ¢)

def test_sub():
a = modular_residue(np.array([0,1,2,3,4,5],dtype="int64"'),5,True)
b = modular_residue (np.array([2,2,2,2,2,2],dtype="int64"),5, True)
c = modular_residue (np.array([3,4,0,1,2,3],dtype="int64"),5,True)
assert np.all(a - b == ¢)

assert np.all(-(b - a) == c)
assert np.all(a - b._residue == c¢)
assert np.all(a - 2 == c)

assert np.all(-(2 - a) == c)

def test_mul():
da = np.array([0,1,2,3],dtype="inte4d")
a = modular_residue (np.array ([2+%*32]+4,dtype="int64")+da, 5, True)
b = modular_residue (np.array ([2+xx32,2%x33,2+xx34,2+xx35],dtype="int64"),5, True)
c = modular_residue (np.array([1,4,2,2],dtype="int64"),5, True)

assert np.all(axb == ¢)

assert np.all (a*xb._residue == c)

assert np.all((2%x%x32)+*a == da+l)
(

assert np.all(a*x(2xx32) == da+l)

28

69

69

def test_pow():
a = modular_residue(np.array ([0]+[3]x6,dtype="int64"),5,True)
b = np.array([0,0,1,2,3,4,5],dtype="1int64d")
c = modular_residue (np.array([1,1,3,4,2,1,3],dtype="int64"),5, True)

assert np.all(ax*xb == c)
assert np.all(axx5 == a)
a = modular_residue (np.array ([0]+[3]*6,dtype="1int64"),5,False)
assert np.all(ax*xb == c)
assert np.all(axx5 == a)

def test_div():
a = modular_residue(np.array([1,2,3,4,3],dtype="int64"),5, True)
b = np.array([1,1,1,1,2],dtype="int64d")
c = np.array([1,3,2,4,4],dtype="int64")
assert np.all(l/(l/a) == a)
assert np.all((l/a)+*b == c)

def test_prime_predicate():
N = [4, 8, 11, 47, 31243, 31249]
B = [False, False, True, True, False, True]
for b,n in zip(B,N):
assert is_prime(n) == b

def test_spaces():

assert np.all(truth_space(2,2) == np.array([[0, O, 1, 1], [0, 1, O, 111))

assert np.all (truth_space(2,3) == np.array([[0, 0, O, 1, 1, 1, 2, 2, 21, [0, 1, 2, O,
x modular_residue (np.array([0,1,2],dtype="1int8"),3)

assert np.all (polynomial_space(x, [0,1,2],3) == np.array([[1,0,0], [1,1,1]1, [1,2,111))

def test_mles_solve():
dtype = 'int64'
for M in [2, 3, 5]:
P = polynomial_space (modular_residue (np.arange (M, dtype=dtype),M),np.arange (M), M)
y = truth_space (M, M, dtype)
w = mles_solve (P,vy)
assert np.all (PQRw == y)

def test_mail():
for M in [2, 3]: # modulus
xh = np.arange (M) # input
yh = truth_space (M,M) # all possible outputs
model = fit (xh,yh) # MAI training
assert np.all (infer (xh,model) == yh)

def test_vmail():
N = 2 # number of input variables
for X in [2, 3]: # range
xh = truth_space (N, X) .transpose () # input
S = xh.shape () [0] # number of samples
yh = truth_space(S,X) # all possible outputs
M = next_prime (S)
xh %= M # fix modulus
h $= M # fix modulus
model = fit (xh,yh) # VMAI training
assert np.all (infer (xh,model) == yh)

P oe

=

def test_cmail():
N = 2 # number of input variables
for X in [2, 3]: # range
xh = truth_space (N, X) .transpose () # input
S = xh.shape () [0] # number of samples
vh = truth_space(S,X) # all possible outputs

M = next_prime (S)

h $= M # fix modulus

h $= M # fix modulus

model = fit (xh,yh) # CMAI training
assert np.all (infer (xh,model) == yh)

X

o oe

=

def unit_test():

List functions in unit test file.

functions = [test_wrong_instance, test_wrong_instance, test_attr,
test_sum, test_sub, test_mul, test_div, test_pow,
test_prime_predicate, test_spaces, test_mles_solve,
test_mai, test_vmai, test_cmai] # all unit test functions

69

Tests.

format_str = "{{:{}s}} test {{}} of {{}}\r'.format (len(functions)+1l) # formatting string
pass_fail str = '' # pass or fail string

failures = [] # test failures

for counter, function in enumerate (functions) :
Perform test.
try:
function ()
pass_fail_str += '.'
except Exception as e:
pass_fail_str += 'F'
failures.append (function)

print (format_str.format (pass_fail_str, counter+l, len(functions)), end='"', flush=True)

Report.
print (format_str.format (pass_fail_str, len(functions), len(functions)),
for fail in failures:

print ('fail at',fail._ _name_)

Known specifications.
print ('\nKnown specifications:')
print ('l. modulus is a positive integer.')

Test scripts.

if

30

__name__ == "_main__":

if len(sys.argv) > 1 and sys.argv[l].lower() == '-d':
Debug tests (temporary coded).
if False:

print (truth_space(2,2))

print (truth_space (2, 3))

x = modular_residue (np.array([0,1,2],dtype="'int8"),3)
print (polynomial_space(x, [0,1,2],3))

if True:
M = 2 # modulus
xh = np.arange (M) # input
print ('xh ="', xh)
yh = truth_space (M,M) # all possible outputs
print ('yh =',yh)
model = fit (xh,yh) # MAI training

print('y =',infer (xh,model))

save_model (model, 'mai. json'")

model = load_model ('mai.json')

print ('y =',infer (xh,model))
if True:

X = 2 # input variable space

N = 2 # number of input variables

xh = truth_space (N, X) .transpose () # input
S = xh.shape () [0] # number of samples

flush=True)

progress

69

yh = truth_space(S,X) # all possible outputs
M = next_prime (S)

xh $= M # fix modulus

yvh $= M # fix modulus

print ('xh ="', xh)

print ('yh =", yh)

model = fit (xh,yh) # VMAI training

print ('w =',model ['parameters'])
print('y =',infer (xh,model))
save_model (model, 'vmai. json')
model = load_model ('vmai.json')
print ('y =',infer (xh,model))

else:
Unit tests.
unit_test ()

The project configuration file is given by

[install]
use_pep5l17 = true

[build-system]
requires = ["setuptools >= 64"]
build-backend = "setuptools.build_meta"

[project]

name = "MAI"

version = "O0.1"

requires-python = "==3.10.11"

dependencies = [
"numpy==1.23.5"

Al12 Matlab

function [model,info] = mai_train(xh,yh,options)
$MAI_TRAIN Training of a modular artificial intelligence.
MODEL = MAI_TRAIN(X,Y) returns the modular artificial inteligence model
MODEL for the training set of input X and output Y pairs, comprised by
a struct with the fields:

decoder: output encoder function

exponents: polynomial space exponents for inference

encoder: input encoder function

error: model training error

infer: the inference function

inputs: input variable indexing for inference

parameters: the artificial intelligence trained parameters

refined: input refined variable indicator for inference

= MAI_TRAIN(X,Y,OPTIONS) allows to specify options OPTIONS for

training:
check: extra error check indicator {false, true} (default false)
group_size: input group size {2, 3, ...} (default 2)
modulus: fixed training modulus {1, 2, 3, 5, 7, 11, ...} (default 0)
refined: refinement indicator for training {false, true} (default true)
verbose: verbosity level {0, 1, 2...} (default 0)

[MODEL, INFO] = MAI_TRAIN(...) also returns a struct with training

information INFO containing the fields:

A0 e A0 o0 o0 0 A A° o0 OO O A A ° o 0 A A° O° O A A° o o

error: the training error at each layer

31

69

grouping: the group size used in the training

groups: the number of group at each layer

modulus: the modulus used in the modular algbra during training
parameters: the number of parameters at each layer

samples: the number of samples used in the training

Example:
M = 7; % modulus
xh = (0:M-1)'; % input training set

yvh = randi (M,M,1)-1; % output training set

model = mai_train(xh,yh); % serial training
[model.infer (xh), yh] % parallel inference unit test

A% o0 d° A A0 0 oo d° d° O o° o oo o

See also NEXT_PRIME, MODULAR_RESIDUE, POLYNOMIAL_SPACE.

o

#ok <x* AGROW>

I hope my life worths a litte bit less than R$10,00: my dad is not easy
)

e e

o

criterion: hard coded

% input arguments

if nargin < 3, options = struct; end

if ~isfield(options, 'verbose'), options.verbose = 0; end

if ~isfield(options, 'refined'), options.refined = true; end

if ~isfield(options, 'group_size'), options.group_size = 2; end

if ~isfield(options, 'check'), options.check = false; end
if ~isfield(options, 'modulus'), options.modulus = 0; end
if ~isfield(options, 'input_step'), options.input_step = 0; end

if ~isfield(options, 'best_error_reduction'), options.best_error_reduction = true; end

% parameters
S = size(xh,1); % number of samples
N = size(xh,2); % number of inputs
Ns = options.input_step; if ~Ns, Ns = N; end $ input step
G = options.group_size; % grouping in each layer
M = next_prime(max([S;2"min(G,Ns);xh(:)+1;yh(:)+1]),1); % modulus
if options.modulus

if options.modulus < M

Mp = options.modulus; % fixed modulus

rmax = ceil (log(max ([xh(:);yh(:)])+1)/log(Mp)); % maximum refinement level

M = Mp“rmax; % modulus

refiners = {}; % input refiner function

xhr = zeros(S,0); % refined input

for r = l:rmax
refiners{r} = Q(x)floor (rem(x*Mp" (r-1),M)/ceil (M/Mp)) ;
xhr = [xhr, refiners{r}(xh)]; % refine input

end

options.input_step = N; % lower refinement priority

options.modulus = 0; % no modulus specification

[model, info] = mai_train (xhr,yh,options);

model.refiners = refiners;

model.infer = @(x)model.decoder(...

infer (model.encoder (x), ...
model.inputs, ...
model.refiners, ...
model.refined, ...
model.parameters, ...
model.exponents, ...
options.group_size));
return
else

32

69

M = next_prime (options.modulus);

end
end
Ilmax = M-1; % maximum refinement layer
% data
x1lim = [min(xh(:)) max(xh(:))];
if any(rem(xh(:),1)
encoder = @ (x)floor ((x-x1lim(1l))/(x1im(2)-x1im(1))/ (l+eps) *M);
else
encoder = @ (x)x;
end
ylim = [min(yh(:)) max(yh(:))];
if any(rem(yh(:),1)

yvh = floor ((yh-ylim(1l))/(ylim(2)-ylim(1l))/ (1l+eps)*M);
decoder = Q(y)y/ (M-1)*(ylim(2)-ylim(1l)) + ylim(1l);

else
decoder = Q(y)y;

end

xh = modular_residue (encoder (xh),M,true); % input

yvh = modular_residue (decoder (yh),M, true); % output

% training

Xh = {xh}; % input through layers

ey = yh; % current output error

info = struct ('modulus',M, 'samples',S, 'grouping',G, ...
'inputs',N, 'groups', 0, 'parameters',0, ...
'error',sum(ey.residue));

Ni = N; % number of current inputs

E = 0:5-1; % exponents

model = struct ('parameters',modular_residue (zeros(S,0),M), ...

"inputs', { {num2cell (1:N) }}, 'refined', {{true(1,N)}}, ...

'refiners', {{}}, "infer'

,Q@(x)0, "exponents',E, ...

'encoder', encoder, 'decoder',decoder, 'xlim',xlim, 'ylim',ylim);

while Ni
% input groups
gmax = min ([Ns,Ni,G]);

ng = nchoosek (Ni, gmax) ;

info.groups(l,end+1l) =

% inputs

% maximum group number

o

% number of groups

o

ng; % append number of groups

if options.refined && N > 1 && numel (Xh) < lmax

Xh(l,end+1l) = {Xh{end}=xG};
model.inputs(l,end+1l) = {num2cell(l:size(Xh{end-1},2))};
model.refined(1l,end+1) = {true(l,size(Xh{end-1},2))};
else
Xh(1l,end+1) = {modular_residue (zeros(S,0),M)};
model.inputs(l,end+1l) = {{}};
model.refined(1l,end+l) = {[]};
end

% training iterations

info.parameters (end+1l) = 0;

info.error (end+l) = sum(ey.residue);

if options.verbose > 0, fprintf('\n%3d inputs starting with error %6d..
X = subsizes (M,gmax); % input fair subsizes: make sum(X) == M-1

xs = scale(Xh{end-1}.residue,M,X); % scaled input

for ig = 1l:ng

% choice for error reduction
if options.best_error_reduction

[g,dy, xhe,eyr] =
else
[g,dy, xhe,eyr] =

best_reduction (xs,ey,gmax, M, X) ;

search_non_null_error_reduction (xs,ey,gmax,M,X);

.\n',Ni,info.error (end)),

33

end

69

end
if ~dy, break, end

% reduce error
P = polynomial_space(xhe,E); % input polynomial space
if options.verbose > 1, tic,fprintf('Solving a %d x %d modular system (L%02d G%03d-%03d)...'"',size(P,1),size
w = P\eyr; % parameters
yw = P*w; % next input
if options.check && any(yw ~= eyr), error('Could not solve modular equation system'), end
eyn = ey - yw; % update output error
errorn = sum(eyn.residue); % new overal error
if errorn < info.error (end)
ey = eyn;
Xh{end} (:,end+1l) = yw;
model.parameters (:,end+1l) = w;
model.inputs{end} (1,end+l) = {g};
model.refined{end} (1,end+1l) = false;
info.error (end) = errorn;
info.parameters (end) = info.parameters(end) + nnz(w);
end
if options.verbose > 1, fprintf (' error %6d in %6.3fs\n',info.error (end),toc), end
if ~info.error (end), break, end
if options.verbose > 0 && ~rem(ig,led), fprintf(' %$6d of %$6d groups analyzed\n',ig,ng), end
end
info.inputs(l,end+1l) = size (Xh{end},2); % append number of inputs
if ~info.error (end), break, end
if Ni == 1, break, end
Ni = size(Xh{end},2); % number of current inputs
end
model.infer = @ (x)decoder (infer (...
model.encoder (x), ...
model.inputs, ...
model.refiners, ...
model.refined, ...
model.parameters, ...
model.exponents, ...
options.group_size));
model.error = ey;
model.cascade = Xh;
end

function y = infer(x,i,r,t,w,E,G)

% cardinalities

nx = size(x,1); % number of inputs
nl = numel (i)-1; % number of layers
M = w.modulus; % modulus

% input refinement

if ~isempty(r)

xr = r{l}(x);
for ir = 2:numel (r)
xr = [xr, r{ir}(x)];
end
X = Xr;
end
n = size(x,2); % number o variables

o

% exponent pruning

ik = find(any(w.residue,2));
w w(ik, :);

E = E(ik);

34

69

% inference
Xs = {modular_residue (x,M,true)}; % input
xw = modular_residue (zeros (nx,0),M,true); % inputs
y = modular_residue(zeros(nx,1l),M,true); % output
iw = 0; % parameter counter
for il = 1:nl

Xs{l,11+1} = Xs{il}+*G;

for ixw = l:numel (t{il+1})

if n == 1 || ~t{il+1} (ixw)
X = subsizes (M, numel (i{il+1}{ixw}));
xs = scale(Xs{il}.residue,M,X);
xw(:,end+1l) = group(xs(:,i{il+1}{ixw}),M,X);
P = polynomial_space (modular_residue (round (xw.residue (:,end)),M),E);
iw = iw + 1;
y =y + Pxw(:,iw);
Xs{il+1l} (:,end+1l) = vy;
end
end
end
y = y.residue;
end
function i = subs2ind(S,I)
if isscalar (S)
o = cumprod([1l,repmat (S,1,size(I,2))]); % offset
else
o = cumprod([1l,S]); % offset
end
for id = 2:size(I,2)
I(:,1d) = I(:,1id).*xo(id);
end
i = sum(I,2); % indexes
end
function Xi = subsizes (M, N)
Xi = floor (M*(1/N));
end
function x = scale (x,M,X)

if isscalar (X)
x = floor (x/ (M-1)/ (1l+eps) *X);
else
x = floor(x/ (M-1)/ (1l+eps)*diag(X));
end
end

function xg = group (x,M, X)
xg = modular_residue (subs2ind (X, x),M);
end

function ix = search_non_null_error_reduction (xh,yh,G)
iz = find(~yh);

for i = iz’
for n = 1l:size(xh,2)
xh(xh(:,n)==xh(i,n),n)
end
end

b = any(xh,1);
ix = find(b);
if G <= numel (ix)

[~,is] = sort((xh(:,1ix)>0) "xyh);
ix = ix(is(end:-1:1));
ix = ix(1:G);

elseif ~isempty (ix)
nix = find(~b);

ix = [ix nix (l:G-numel (ix))];

end
end

function [gb,dyb, xheb,yheb] =
g = nchoosek (l:size(xh,2),G);

dyb = 0;
gb = [1;
xheb = [];
yheb = [];
for ig = l:size(g,1)
xhe = group(xh(:,g(ig,:)),M,X);
[xhe,yhe] = prune_error (xhe,yh);
dy = sum(yhe.residue);
if dy > dyb
xheb = xhe;
yheb = vhe;
dyb = dy;
gb = g(ig,:);
end
end
end
function [xh,yh] = prune_error (xh,yh)
[~,1iu, ju] = unique (xh.residue);

yh = accumarray (ju,yh.residue, [numel (iu),1],@ (x
yh = modular_residue (yh (ju), xh.modulus) ;

end

function p = next_prime (n,s)

if nargin < 2, s = 1; end

p = n;

while ~is_prime (p)
p=p+s;

end

end

function b = is_prime (n)
b = true;
for d = 2:n".5
if ~rem(n,d)
b = false;

36

best_reduction (xh, yvh, G, M, X)

unique encoded input

)min (x));

o
S

minimum error

69

69

break
end
end
end

function Px = polynomial_space (x,X)
if nargin < 2, X = 0:size(x,1)-1; end

Px = repmat (x, [1,numel (X)]);
for 1 = 1l:numel (X)
Px(:,1) = x.”X(1);
end
end

o

% criterion: long coded

classdef modular_residue
$MODULAR_RESIDUE Number in modular algebra.

MODULAR_RESIDUE properties:
isfinite - finite field indicator
modulus - the modulus
residue - the residue itself

MODULAR_RESIDUE methods:
modular_residue - construct a number in modular algebra

Example: linear modular equations
M = 2; % modulus

modular_residue([0;1],M); % input
modular_residue([0,0,1,1;0,1,0,1]1,M); % output
[ones(2,1) X] \ Y % universal weights and bias

X
Y
W

0 A A0 o0 o0 o A A0 o0 OO S A O O o O o

See also INTERVAL, DOUBLE.
properties
%The residue itself.

residue

%The modulus.
modulus

%$Finite field indicator.

isfinite
end
methods
% setters and getters
function value = get.residue (r)
value = r.residue;
end
function r = set.residue(r,value)
% error check
if ~isnumeric(value) || ~isreal (value)
error ('Residue must be real numbers.');
end
% setup
r.residue = rem(value, r.modulus); %$#ok<MCSUP>

37

38

69

in = find(r.residue < 0);
r.residue (in) = r.residue(in) + r.modulus; $%#ok<MCSUP>

end

function value = get.modulus (r)

value =
end

function r

% error

end

°

% setup

r.

modulus;

set .modulus (r,value)

check
if ~isnumeric(value) || ~isreal (value) || ~isscalar (value)
error ('Modulus must be a positive integer.');

r.modulus

end

% constructor

function r

= value;

modular_residue (n, M, b)

$MODULAR_RESIDUE Construct a number in modular algebra.
MODULAR_RESIDUE (N,M) returns a residue in modular algebra

R =

R =

o® o o o o° o° oo

o

for number N modulus M.

MODULAR_RESIDUE (N,M,B) allows to specify if the field is

finite by the indicator B, which speeds up some operations.
See also MODULAR_RESIDUE.

input arguments

if nargin < 3, b = false; end

o

setup

B R B

end

o

function r

.modulus =
.residue
.isfinite

% residue operators

plus (ra, rb)

$PLUS Addition of residues.

% See also MODULAR_RESIDUE.

% error check
if ~isscalar(ra) && ~isscalar(rb) && ~isequal (size(ra),size(rb))
error ('Inconsistent operand dimensions.')

end

if isa(ra, 'modular_residue') && isa(rb, 'modular_residue') && ra.modulus ~= rb.modulus
error ('Operand modulus must be the same.')

end

% minus operation
if isa(ra, 'modular_residue') && isa(rb, 'modular_residue')

r =

modular_residue (ra.residue+rb.residue, ra.modulus, ra.isfinite);

elseif isa(ra, 'modular_residue')

r =
else
r =
end
end

function r

modular_residue (ra.residue+rb, ra.modulus,ra.isfinite);

modular_residue (ra+rb.residue, rb.modulus,rb.isfinite);

minus (ra, rb)

69

MINUS Subtraction of residues.

o° o oe

See also MODULAR_RESIDUE.
% error check
if ~isscalar(ra) && ~isscalar(rb) && ~isequal (size(ra),size(rb))
error ('Inconsistent operand dimensions.')
end
if isa(ra, 'modular_residue') && isa(rb, 'modular_residue') && ra.modulus ~= rb.modulus
error ('Operand modulus must be the same.')
end
% minus operation
if isa(ra, 'modular_residue') && isa(rb, 'modular_residue')
r = modular_residue (ra.residue-rb.residue, ra.modulus, ra.isfinite);
elseif isa(ra, 'modular_residue')
r = modular_residue (ra.residue-rb,ra.modulus, ra.isfinite);
else
r = modular_residue (ra-rb.residue, rb.modulus, rb.isfinite);
end
end

function r = uplus(r)
%$UPLUS Unary addition of residues.

o° oP

See also MODULAR_RESIDUE.
end

function r = uminus (r)
$UMINUS Unary subtraction of residues.

o° oe

See also MODULAR_RESIDUE.

o

unary minus operation
r = modular_residue (-r.residue,r.modulus,r.isfinite);
end

function r = times (ra, rb)
$TIMES Multiplication of residues.

o o

See also MODULAR_RESIDUE.

% error check
if ~isscalar(ra) && ~isscalar(rb) && ~isequal (size(ra),size(rb))
error ('Inconsistent operand dimensions.')

end

if isa(ra, 'modular_residue') && isa(rb, 'modular_residue') && ra.modulus ~= rb.modulus
error ('Operand modulus must be the same.')

end

o

% multiplication of residues

if isa(ra, 'modular_residue') && isa(rb, 'modular_residue')
r = modular_residue (ra.residue.+rb.residue, ra.modulus, ra.isfinite);
elseif isa(ra, 'modular_residue')
r = modular_residue (ra.residue.+rb,ra.modulus, ra.isfinite);
else
r = modular_residue (ra.*rb.residue,rb.modulus, rb.isfinite);
end
end
function r = mtimes (ra, rb)

SMTIMES Matrix multiplication of residues.

o

39

40

end

fun

% See also MODULAR_RESIDUE.

°

% error check

if ~isscalar(ra) && ~isscalar(rb) && size(ra,2)~=size(rb,1)

error ('Inconsistent operand dimensions.')
end

if isa(ra, 'modular_residue') && isa(rb, 'modular_residue')

error ('Operand modulus must be the same.')
end

°

% matrix multiplication of residues

if isa(ra, 'modular_residue') && isa(rb, 'modular_residue')

&& ra.modulus

r = modular_residue (ra.residuexrb.residue, ra.modulus, ra.isfinite);

elseif isa(ra, 'modular_residue')

r = modular_residue (ra.residuexrb,ra.modulus, ra.isfinite);

else

r = modular_residue (ra*rb.residue,rb.modulus, rb.isfinite);
end
ction r = rdivide (ra, rb)

$RDIVIDE Right division of residues.

o° o°

See also MODULAR_RESIDUE.

o

error check

if ~isscalar(ra) && ~isscalar(rb) && ~isequal (size(ra),size(rb))

error ('Inconsistent operand dimensions.')
end

if isa(ra, 'modular_residue') && isa(rb, 'modular_residue')

error ('Operand modulus must be the same.')
end

% right division of intervals

if isa(ra, 'modular_residue') && isa(rb, 'modular_residue')
M = ra.modulus;
b = ra.isfinite;
ra = ra.residue;
rb = rb.residue;

elseif isa(ra, 'modular_residue')
M = ra.modulus;

b = ra.isfinite;

ra = ra.residue;
else

M = rb.modulus;

b = rb.isfinite;

rb = rb.residue;
end

°

% Euclidean algorithm

&& ra.modulus

rbi = [zeros (numel (rb),1), ones(numel (rb),1)];
rmi = [repmat (M,numel (rb),1l), rb(:)]; % Euclidean expansion of modulus
in = find(rmi(:,2));

while ~isempty (in)

o

% Euclidean expansion

q = floor(rmi(in,1)./rmi(in,2)); % quotient
rbi(in,:) = [rbi(in,2), rbi(in,1)-g.*xrbi(in,2)]
rmi(in, :) = [rmi(in,2), rmi(in,1)-g.*xrmi(in,2)]
in = in(rmi(in,2)>0);

end
if ~all(rmi(:,1)==1 | rmi(:,1)==M)

error ('Divisor and modulus must be coprime.')
end

69

~= rb.modulus

~= rb.modulus

69

r = ra.*modular_residue (reshape(rbi(:,1),size(rb)),M,b);
end

function r = ldivide (ra, rb)
$LDIVIDE Left division of residues.

o° oe

See also MODULAR_RESIDUE.

o

symmetrical case
r = rb ./ ra;
end

function r = mrdivide (ra, rb)
$MRDIVIDE Matrix right division of residues.

o° oo

See also MODULAR_RESIDUE.

o

matrix right division
r = rb \ ra;
end

function r = mldivide (ra, rb)
S$MLDIVIDE Matrix left division of residues.

oo o

See also MODULAR_RESIDUE.

% error check
if ~ismatrix(ra)

error ('Divisor must be a matrix.');

end

if ~ismatrix(rb)
error ('Dividend must be a matrix.');

end

if ~isscalar(ra) && ~isscalar(rb) && size(ra,l)~=size(rb,1)
error ('Inconsistent operand dimensions.')

end

if ~isscalar(ra) && isscalar (rb)
error ('Matrix dimensions must agree.');

end

if isa(ra, 'modular_residue') && isa(rb, 'modular residue') && ra.modulus ~= rb.modulus
error ('Operand modulus must be the same.')

end

if ~isa(ra, 'modular_residue'), ra

modular_residue (ra, rb.modulus,rb.isfinite); end
if ~isa(rb, 'modular_residue'), rb ;

modular_residue (rb, ra.modulus, ra.isfinite) end

% special cases
if ra.modulus==1, r = modular_residue (zeros(size(ra,2),size(rb,2)),1,true); return, end
if isscalar(ra), r = rb./ra; return, end

[

% matrix left division

na = size(ra,2); % number of columns in operator A
nb = size(rb,2); % number of columns in operator B
n = na + nb; % number of columns

m = size(ra,l); % number of rows

T = [ra,rb]; % tableau

% Gaussian elimination

s = 1l:m; $ row sorting vector
for i = 1:m
[~,imax] = max(subsref (T,substruct('()',{s(i:m),1i}))); % pivot row
s([i, i+imax-1]) = s([i+imax-1, i]); % swap pivot to current row
Ts = subsref (T,substruct (' ()',{s(i),i+l:n}))/...
subsref (T, substruct (" () ', {s(i),1})); % normalize pivot row

vl

69

T.residue(s(i),i+l:n) = Ts.residue;
Ts = subsref (T, substruct (' ()',{s(i+l:m),i:n})) -
subsref (T, substruct (' () ', {s(i+1l:m),i}))*...
subsref (T, substruct (' () ', {s(i),1i:n})); % normalize ramaining rows
T.residue(s(i+l:m),i:n) = Ts.residue;
end

o

% backward substitution
for i = m-1:-1:1

Ts = subsref (T,substruct('()',{s(i),na+l:n})) -
subsref (T, substruct (" () "', {s(i),i+l:m})) ...
subsref (T, substruct (' () ', {s(i+1l:m),na+l:n}));
T.residue (s (i), na+l:n) = Ts.residue;
end
r = [subsref(T,substruct('()',{s,na+l:n})); zeros(na-m,nb)];
end
function r = power (ra, rb)

$POWER Exponentiation of residues.

See also MODULAR_RESIDUE.

Yo

¥ error check

if ~isscalar(ra) && ~isscalar(rb) && ~isequal (size(ra),size(rb))
error ('Inconsistent operand dimensions.')

end

if isa(ra, 'modular_residue') && isa(rb, 'modular_residue') && ra.modulus ~= rb.modulus
error ('Operand modulus must be the same.')

end

o

% power of residues

if isa(ra, 'modular_residue') && isa(rb, 'modular_residue')
M = ra.modulus;
b = ra.isfinite;
a = ra.residue;
e = rb.residue;

elseif isa(ra, 'modular_residue')
M = ra.modulus;

b = ra.isfinite;
a = ra.residue;
e = rb;
else
M = rb.modulus;
b = rb.isfinite;
a = rem(ra,M);
in = find(a < 0);
a(in) = a(in) + M;
e = rb.residue;
end
if isscalar(a), a = repmat(a,size(e)); end

if isscalar(e), e repmat (e, size(a)); end

r = ones(size(a));
ar = a;
er = e;
if b
r = rem(a."rem(e,M-1),M);
else

while any(er > 0)
iodd = find(rem(er,2));
r(iodd) = rem(r (iodd) .=*ar (iodd),M);
ar = rem(ar.xar,M);
er = floor(er/2);

69

end
r(~a & ~e) = 1;
end
r = modular_residue (r,M,b);
end

function B = 1t (ra,rb)
%$LT Less than comparison of residues.

o° oo

See also MODULAR_RESIDUE.

% error check
if ~isscalar(ra) && ~isscalar(rb) && ~isequal (size(ra),size(rb))
error ('Inconsistent operand dimensions.')
end
if isa(ra, 'modular_residue') && isa(rb, 'modular_residue') && ra.modulus ~= rb.modulus
error ('Operand modulus must be the same.')
end
% less than comparison of residues
if isa(ra, 'modular_residue') && isa(rb, 'modular_residue')
B = ra.residue < rb.residue;
elseif isa(ra, 'modular_residue')
B = ra.residue < rb;
else
B = ra < rb.residue;
end
end

function B = gt (ra, rb)
%$GT Greater than comparison of residues.

oo o

See also MODULAR_RESIDUE.

% error check

if ~isscalar(ra) && ~isscalar(rb) && ~isequal (size(ra),size(rb))
error ('Inconsistent operand dimensions.')

end

if isa(ra, 'modular_residue') && isa(rb, 'modular_residue') && ra.modulus ~= rb.modulus
error ('Operand modulus must be the same.')

end

% greater than of residues

if isa(ra, 'modular_residue') && isa(rb, 'modular_residue')
B = ra.residue > rb.residue;

elseif isa(ra, 'modular_residue')
B = ra.residue > rb;

else
B = ra > rb.residue;
end
end
function B = le(ra, rb)

$LE Less than or equal comparison of residues.

o° oe

See also MODULAR_RESIDUE.

o

error check
if ~isscalar(ra) && ~isscalar(rb) && ~isequal (size(ra),size(rb))
error ('Inconsistent operand dimensions.')
end
if isa(ra, 'modular_residue') && isa(rb, 'modular_residue') && ra.modulus ~= rb.modulus
error ('Operand modulus must be the same.')

43

44

end

fun

end

fun

end

fun

end

% less or equal to comparison of residues

if isa(ra, 'modular_residue') && isa(rb, 'modular_residue')
B = ra.residue <= rb.residue;

elseif isa(ra, 'modular_residue')
B = ra.residue <= rb;

else
B = ra <= rb.residue;

end

ction B = ge(ra, rb)
%$GE Greater than or equal comparison of residues.

o° o

See also MODULAR_RESIDUE.

% error check

if ~isscalar(ra) && ~isscalar(rb) && ~isequal (size(ra),size(rb))

error ('Inconsistent operand dimensions.')
end

if isa(ra, 'modular_residue') && isa(rb, 'modular_residue')

error ('Operand modulus must be the same.')
end

% greater or equal to comparison of residues

if isa(ra, 'modular_residue') && isa(rb, 'modular_residue')
B = ra.residue >= rb.residue;

elseif isa(ra, 'modular_residue')
B = ra.residue >= rb;

else
B = ra >= rb.residue;

end

ction B = eqg(ra, rb)
$EQ Equality comparison of residues.

% See also MODULAR_RESIDUE.

% error check

&& ra.modulus

if ~isscalar(ra) && ~isscalar(rb) && ~isequal (size(ra),size(rb))

error ('Inconsistent operand dimensions.')
end

if isa(ra, 'modular_residue') && isa(rb, 'modular_residue')

error ('Operand modulus must be the same.')
end

% equal comparison of residues

if isa(ra, 'modular_residue') && isa(rb, 'modular_residue')
B = ra.residue == rb.residue;

elseif isa(ra, 'modular_residue')
B = ra.residue == rb;

else
B = ra == rb.residue;

end

ction B = ne(ra, rb)

$NE Not equal comparison of residues.

o
S
o
e

See also MODULAR_RESIDUE.

&& ra.modulus

69

rb.modulus

rb.modulus

69

°

% error check
if ~isscalar(ra) && ~isscalar(rb) && ~isequal (size(ra),size(rb))
error ('Inconsistent operand dimensions.')
end
if isa(ra, 'modular_residue') && isa(rb, 'modular_residue') && ra.modulus ~= rb.modulus
error ('Operand modulus must be the same.')
end
% not equal comparison of residues
if isa(ra, 'modular_residue') && isa(rb, 'modular_residue')
B = ra.residue ~= rb.residue;
elseif isa(ra, 'modular_residue')
B = ra.residue ~= rb;
else
B = ra ~= rb.residue;
end
end

function r = transpose(r)
$TRANSPOSE Transpose of residues.

o° o

See also MODULAR_RESIDUE.

% error check
if ~ismatrix(r), error ('Residue must be a matrix.'), end
% transpose operation
r.residue = r.residue.';
end

function r = ctranspose (r)
%$CTRANSPOSE Complex conjugate transpose of residues.

o° oP

See also MODULAR_RESIDUE.

o

error check
if ~ismatrix(r), error('Residue must be a matrix.'), end
% transpose operation
r.residue = r.residue';
end

function r = horzcat (varargin)
$HORZCAT Horizontal concatenation of residues.

o

o

See also MODULAR_RESIDUE.

o

horizontal concatenation

rs = cell (nargin,l1);
M= [];

b = false;

for i = l:nargin

if isa(varargin{i}, 'modular_ residue')
rs{i} = varargin{i}.residue;
if isempty (M)
M = varargin{i}.modulus;
b = varargin{i}.isfinite;
elseif M ~= varargin{i}.modulus
error ('Inconsistent modulus.')

end

elseif isnumeric(varargin{i})
rs{i} = varargin{i};

else

45

46

69

error('Invalid value for concatenation.')
end
end
r = modular_residue (horzcat (rs{:}),M,b);
end

function r = vertcat (varargin)
$VERTCAT Vertical concatenation of residues.

o° o

See also MODULAR_RESIDUE.

% vertical concatenation

rs = cell(nargin,1);
M= [];
b = false;
for i = l:nargin
if isa(varargin{i}, 'modular_residue')
rs{i} = varargin{i}.residue;

if isempty (M)
M = varargin{i}.modulus;

b = varargin{i}.isfinite;
elseif M ~= varargin{i}.modulus
error ('Inconsistent modulus."')
end
elseif isnumeric (varargin{i})
rs{i} = varargin{i};
else
error ('Invalid value for concatenation.')
end
end
r = modular_residue (vertcat (rs{:}),M,Db);

end

function n = numArgumentsFromSubscript (varargin)
n = 1;
end

function r = subsref(r,s)
$SUBSREF Subscripted interval reference of residues.

o° oe

See also MODULAR_RESIDUE.

% subscripted residue reference
for is = 1l:length(s)
if s(is) .type ==

r = r.(s(is) .subs);
else
if isa(r, 'modular_residue')
r = modular_residue (subsref (r.residue,s(is)),r.modulus,r.isfinite);
else
r = subsref(r,s(is));
end
end
end
end

function ind = end(r,k,~)
ind = size(r.residue,k);
end

function r = subsasgn(r,s,rs)
$SUBSREF Subscripted interval assignment of residues.

>
S

69

% See also MODULAR_RESIDUE.

% error check

if ~isa(rs, 'modular_residue') && ~isnumeric(rs)
error ('Invalid value for residues.')

end

if isa(rs, 'modular_residue') && r.modulus ~= rs.modulus
error ('Modulus must agree.')

end

% subscripted residue assignment
if (numel(s) == 1) && isequal(s(l).type, '()")
if isa(rs, 'modular_residue')
r.residue(s.subs{:}) = rs.residue;
else
ri = rem(rs,r.modulus);
in = find(ri < 0);
ri(in) = ri(in) + r.modulus;
r.residue(s.subs{:}) = ri;
end
elseif (numel(s) == 2) && isequal(s(l).type, '.")
r.(s(l) .subs) (s(2) .subs{:}) = rs;
end
end
% residue functions
function r = sum(r,varargin)
%$SUM Sum of residues.

o° oP

See also MODULAR_RESIDUE.

o

sum of residues
r.residue = rem(sum(r.residue,varargin{:}),r.modulus);
end

function r = cumsum(r,varargin)
%$CUMSUM Cumulative sum of residues.

o o

See also MODULAR_RESIDUE.

o

cumulative sum of residues
r.residue = rem(cumsum(r.residue,varargin{:}),r.modulus);
end

function r = reshape (r,varargin)
$RESHAPE Resize of residues.

o o° o

See also MODULAR_RESIDUE.

o

resize of residues
r.residue = reshape(r.residue,varargin{:});
end

function varargout = size(r,varargin)
%$SIZE Size of residues.

oo oo

See also MODULAR_RESIDUE.

% size of residues

varargout = cell(l,max(l,nargout));

[varargout{:}] = size(r.residue,varargin{:});
end

69

function s = length(r)
$LENGTH Length of residues.

o oo

See also MODULAR_RESIDUE.

o

length of residues
s = length(r.residue);
end

function s = numel (r,varargin)
$NUMEL Number of residues.
%
%

See also MODULAR_RESIDUE.

o

number of residues
s = numel (r.residue,varargin{:});
end

function r = repmat (r,varargin)
$REPMAT Repetition of residues.
%

See also MODULAR_RESIDUE.

o

repetition of residues
r.residue = repmat (r.residue,varargin{:});
end

function b = isnan(r)
$ISNAN Check whether residue is not a number.

o o

See also MODULAR_RESIDUE.

o

not a number residue indicator
= isnan(r.residue);

o

end

function b = isinf (r)
$ISINF Check whether residue is infinite.

o

o

See also MODULAR_RESIDUE.

% infinite residue indicator

o

= isinf (r.residue);
end

function b = isempty (r)
$ISEMPTY Check whether residue is empty.

o oo

See also MODULAR_RESIDUE.

o

empty residue indicator

o

= isempty (r.residue);
end

function b = isscalar (r)
$ISSCALAR Check whether residue is scalar.

o°

o

See also MODULAR_RESIDUE.

o

scalar residue indicator

o

= isscalar (r.residue);
end

69

function b = iscolumn(r)
%$ISCOLUMN Check whether residue is a column vector.

o oo

See also MODULAR_RESIDUE.

column residue indicator

o

o

= iscolumn (r.residue);
end

function b = isrow(r)
%$ISROW Check whether residue is a row vector.

o° oe

See also MODULAR_RESIDUE.

o

row residue indicator

o

= isrow(r.residue);
end

function b = isvector(r)
%$ISVECTOR Check whether residue is a vector.

o°

o

See also MODULAR_RESIDUE.

o

vector residue indicator

o

= isvector (r.residue);
end

function b = ismatrix(r)
$ISMATRIX Check whether residue is a matrix.

oo o

See also MODULAR_RESIDUE.

o

matrix residue indicator
= ismatrix(r.residue);

o

end

function b = isnumeric(~)
$ISNUMERIC Check whether residue is numeric.
Always returns true.

o o° oo

See also MODULAR_RESIDUE.

o

numeric indicator

o

= true;
end

function [r,i] = min(r,varargin)
SMINIMUM Minimum of residues.

o o o

See also MODULAR_RESIDUE.

°

% error check

if (nargin >= 2) && ~isscalar(r) && ~isscalar(varargin{l}) && ...

~isequal (size(r),size(varargin{l}))
error ('Inconsistent operand dimensions.')
end
if isa(r, 'modular_residue') && isa(varargin{l}, 'modular_residue')
r.modulus ~= varargin{l}.modulus
error ('Operand modulus must be the same.')
end
% minimum of residues
if (nargin >= 2) && ~isempty(varargin{l})

&&

49

50

69

if isa(varargin{l}, 'modular_residue')

[r.residue,i] = min(r.residue,varargin{l}.residue,varargin{2:end});
elseif isnumeric (varargin{l})
[r.residue,i] = min(r.residue,varargin{:});
else
error ('Invalid second operand.')
end
else
[r.residue,i] = min(r.residue,varargin{:});
end
end
function [r,i] = max(r,varargin)

$MAXIMUM Maximum of residues.

o° o

>

S

if

end

if

end

>
S

See also MODULAR_RESIDUE.

error check

(nargin >= 2) && ~isscalar(r) && ~isscalar (varargin{l}) &&
~isequal (size(r),size(varargin{l}))
error ('Inconsistent operand dimensions.')

(nargin >= 2) && isa(r, 'modular_residue') && isa(varargin{l}, 'modular_residue')
r.modulus ~= varargin{l}.modulus
error ('Operand modulus must be the same.')

maximum of residues

if (nargin >= 2) && ~isempty(varargin{l})
if isa(varargin{l}, 'modular residue')
[r.residue,i] = max(r.residue,varargin{l}.residue,varargin{2:end});
elseif isnumeric (varargin{l})
[r.residue,i] = max(r.residue,varargin{:});
else
error ('Invalid second operand.')
end
else
[r.residue,i] = max(r.residue,varargin{:});
end
end

function r = cat(d,varargin)
%$CAT Concatenation of modular residues.

o

o

o
S

if

>
&l

r

See also MODULAR_RESIDUE.

error check

nargin < 2, error ('No enough input arguments.'), end
concatenation
varargin{l}.residue;

for i = 2:nargin-1

end

r
end

if varargin{i}.modulus ~= varargin{l}.modulus
error ('Inconsistent modulus."')

end

r = cat(d,varargin{i}.residue);

modular_residue (r,varargin{1l}.modulus) ;

function r = permute (r,dp)
$PERMUTE Permute dimensions.

o

&&

end

end

69

% See also MODULAR_RESIDUE.
% permutation

r.residue = permute (r.residue,dp);
end

function r = abs(r)
%$ABS Absolute value.

o° oo

See also MODULAR_RESIDUE.

% absolute value
end

function r = floor (r)
$FLOOR Floor value.

o o o

See also MODULAR_RESIDUE.

o

floor value
end

function r = ceil (r)
SCEIL Ceil wvalue.

o° ol

See also MODULAR_RESIDUE.

% ceil value
end

function r = round(r)
$ROUND Rounded off wvalue.

o o o

See also MODULAR_RESIDUE.

o

% rounded off wvalue
end

function n = nnz(r)
$NNZ Number of non zeros.

o o o

See also MODULAR_RESIDUE.

o

non zeros count
n = nnz(r.residue);
end

function disp(r)
%$DISP Display of residues.

o oo

See also MODULAR_RESIDUE.
% display of residues
disp(r.residue)
fprintf ('mod %d\n', r.modulus)
end

51

52

69

Index

algorithm continuous, 9
Euclidean, 16 recurrent, 10

artificial intelligence tensor, 13
model, 7 uncertain, 13
recurrent, 10 vector, 10
training, /

modular polynomial, 8
vector modular polynomial, 11, 12

code
Matlab
modular artificial intelligence, 31
Pyhon
modular artificial intelligence, 1/

error
measure
least squares, 8

finite field, 8
modular algebra, 8, 16

notation
Einstein, 13

parameter, /
parameterization
modular polynomial, &
modular polynomial convolution, 13
tight, 7
universal, 7

set

consistent sample, /
space

polynomial, 8

time series, 10

variable

53

54

69

©) 2026 GAIA

	Updates
	Contents
	1 Introduction
	2 Artificial intelligence
	2.1 Model
	2.2 Training

	3 Tight universal parameterization
	3.1 Basic problem statement
	3.2 Modular polynomial
	3.2.1 Training
	3.2.1.1 Complexity analysis
	3.2.1.2 Continuous input and output
	3.2.1.3 Recurrent input and output
	3.2.1.4 Vector input and output
	3.2.1.5 Vector modular training
	3.2.1.6 Efficient vector modular training
	3.2.1.7 Optimal vector architecture
	3.2.1.8 Tensor input and output
	3.2.1.9 Uncertain input and output
	3.2.1.10 Incomplete input and output
	3.2.1.11 Round off errors

	3.2.2 Examples
	3.2.2.1 Binary input and output
	3.2.2.2 Ternary input and output

	4 Case studies
	4.1 Fire detection
	4.1.1 Detection
	4.1.2 Segmentation

	4.2 Bus inspection
	4.2.1 Nut angle

	4.3 First language models
	4.3.1 Brazil
	4.3.2 Brazil and United States
	4.3.3 Brazil, United States, Spain and Israel

	4.4 Psychology of discourse

	A Code
	A.1 Modular artificial intelligence
	A.1.1 Python
	A.1.2 Matlab

	Index

