
Artificial intelligence

technical report

Author:
A. C. LISBOA, PhD

2026-01-31

© 2026 GAIA

Updates

19/12/2025 Adriano Chaves Lisboa

i. vector modular artificial intelligence math reasonably stable;

ii. implementation very uninstable.

01/01/2026 Adriano Chaves Lisboa

i. vector modular artificial intelligence math stable;

ii. Python implementation stable.

23/01/2026 Adriano Chaves Lisboa

i. vector modular artificial intelligence math stable;

ii. Matlab implementation stable.

Contents

Updates 3

Contents 5

1 Introduction 7

2 Artificial intelligence 7

2.1 Model . 7

2.2 Training . 7

3 Tight universal parameterization 7

3.1 Basic problem statement . 8

3.2 Modular polynomial . 8

3.2.1 Training . 8

3.2.1.1 Complexity analysis . 9

3.2.1.2 Continuous input and output . 9

3.2.1.3 Recurrent input and output . 10

3.2.1.4 Vector input and output . 10

3.2.1.5 Vector modular training . 10

3.2.1.6 Efficient vector modular training 12

3.2.1.7 Optimal vector architecture . 13

3.2.1.8 Tensor input and output . 13

3.2.1.9 Uncertain input and output . 13

3.2.1.10 Incomplete input and output . 13

3.2.1.11 Round off errors . 13

3.2.2 Examples . 13

3.2.2.1 Binary input and output . 13

3.2.2.2 Ternary input and output . 14

4 Case studies 16

4.1 Fire detection . 16

4.1.1 Detection . 16

4.1.2 Segmentation . 16

4.2 Bus inspection . 16

4.2.1 Nut angle . 16

4.3 First language models . 16

4.3.1 Brazil . 16

4.3.2 Brazil and United States . 16

4.3.3 Brazil, United States, Spain and Israel . 16

4.4 Psychology of discourse . 16

A Code 16

A.1 Modular artificial intelligence . 16

A.1.1 Python . 17

A.1.2 Matlab . 31

Index 53

1 Introduction

First principles approach.

2 Artificial intelligence

2.1 Model

Artificial intelligence may be modeled in general as a function

y = f(w, x), x ∈ X, w ∈W, y ∈ Y (1)

that allows mapping input x (in set X) to output y (in set Y) after being trained to

obtain parameters w (in set W) that minimize errors over a sample set of S input-

output pairs (x̂s, ŷs) ∈ S, s = 0, ..., S − 1. For instance, a linear parameterization would be

y = w0 + w1x = [1 x]w, x, y ∈ R, w ∈ R2.

2.2 Training

Training is an optimization problem in the form

w = arg min
w

d(f(w, x̂k), ŷk) (2)

where d(y, ŷ) : Y× Y→ R is a distance measure between y ∈ Y and ŷ ∈ Y.

3 Tight universal parameterization

Definition 1 (consistent sample). A sample set S is consistent if the input samples x̂ (where
(x̂s, ŷs) ∈ S) are unique (i.e. x̂s ̸= x̂s′ , ∀s ̸= s′).

A consistent sample set S implies |Y| , |S| ≤ |X|.

Definition 2 (universal). A parameterization is universal when there is always a set of parameters to
achieve any input-output combination of consistent sample set S.

Definition 3 (tight). A parameterization is tight when the cardinality of parameter space equals to
the cardinality of input-output combinations, i.e. when |W| = |Y||X|.

7

3.1 Basic problem statement

When universality and tightness are the analysis focus, and also finite data, a unique

correspondence between input and output, and also the whole set of their combinations

and a tight parameter space to represent them, naturally lead to integer numbers due

to finiteness both in theory and in practice. Indeed, in practice, a continuous number is

typically approximated by an integer mantissa and exponent representation. So, the most

basic problem to be analyzed is based on integer set maps.

Given an input x ∈ {0, ..., X − 1} and an output y ∈ {0, ..., Y − 1}, how to define a

tight universal parameterization capable of learning any consistent training set (x̂s, ŷs),
s = 0, ..., S − 1?

There are Y X possible input-output combinations, so that a universal parameterization

must have at least this amount of combinations in parameter space. Is it possible to define

a parameterization tight to this bound?

3.2 Modular polynomial

The modular polynomial parameterization is defined by

y =
X−1∑
i=0

wix
i mod Y (3)

= [1 x x2 ... xX−1]w mod Y (4)

= Pxw mod Y (5)

where the parameters w ∈ W are tight (i.e. |W| = Y X) and they are universal only for

X = Y = M prime or a power of a prime (i.e. if the field is finite).

3.2.1 Training

The training of the modular polynomial parameterization model for a consistent sample

set is exact and given by the solution of a system of modular linear equations given by

w⋆ =


1 x̂0 x̂2

0 ... x̂M−1
0

1 x̂1 x̂2
1 ... x̂M−1

1
...

...
...

. . .
...

1 x̂S−1 x̂2
S−1 ... x̂M−1

S−1


−1 

ŷ0

ŷ1
...

ŷS−1

 mod M (6)

= P −1
x ŷ mod M (7)

where Px is the polynomial space and for S < M (e.g. a consistent sample set) the

solution is optimal on the least square error measure d = (Pxw − ŷ)T (Pxw − ŷ) using the

8

pseudo-inverse defined by

(P T
x Px)−1P T

x (8)

Since solving a system of equations involve divisions, the modulus M must be a prime

to allow training. Furthermore, when M > S , the last M − S elements of w are null, so that

it is enough to consider the first S terms of the M modular polynomial and solve a square

S × S system of linear equations.

3.2.1.1 Complexity analysis For a consistent sample set, the training time complexity is

given by the solution of the S × S modular linear equation system (see Figure 1 for training

timing in practice), for S ≤ M , i.e. O(S3), and the storage complexity is given by the matrix

Px as O(S2 log M) bytes. To store the parameters, at most S non-null values in modular M

algebra are necessary, i.e. O(S log M) bytes of storage.

0 200 400 600 800 1000 1200

 M

0

50

100

150

200

ti
m

in
g
,
 t

(s

)

Figure 1: Average training timing for 4 repetitions on random datasets. Fits on t ≤ 157×10−6M2

[s].

Considering that b = log28 M bytes are needed to store a M modular residue and that a

computer has B bytes of available memory, the problem size is limited by

K2 log28 M ≤ B (9)

to be properly trained (e.g. S = 218 = 262, 144 samples using modulus M = 264 would

require at least 244B≈ 18TB of memory, which is currently infeasible to train, or 236B≈ 69GB

of memory for K = 216 = 65, 536 samples modulus M = 232 requiring about some hours of

processing training in a modern supercomputer).

3.2.1.2 Continuous input and output Any continuous input x̂ ∈ [x̂, ¯̂x] can be mapped

into {0, ..., M − 1} using

x =
⌊

x̂− x̂
¯̂x− x̂

M

1 + ϵ

⌋
mod M (10)

9

and, similarly, any continuous output y ∈ [ŷ, ¯̂y] can be mapped into {0, ..., M − 1} using

y =
⌊

ŷ − ŷ
¯̂y − ŷ

M

1 + ϵ

⌋
mod M (11)

where ϵ is an infinitesimal number, which in practice is the machine floating point represen-

tation error.

3.2.1.3 Recurrent input and output The output of a first entry may be the input in the

next time (i.e. a recurrent artificial intelligence)

xt+1 = y(xt) (12)

for a given x0, so that a sequence of up to M unique values may be obtained until a loop is

reached.

3.2.1.4 Vector input and output A vector of n modular M variables x̂ may be converted

to a single variable using scaling and shifting

x =
n∑

i=1

⌊
x̂i

M − 1
X̂

1 + ϵ

⌋
X̂ i−1 mod M, X̂ =

⌊
n
√

M
⌋

(13)

for concatenation of variables (i.e. x̂ = [0 0 0...] implies x = 0, ... x̂ = [(M − 1) 0 0...] implies

x = X̂ − 1, x̂ = [0 (M − 1) 0...] implies x = (X̂ − 1)X̂ , ...), where ϵ is an infinitesimal number,

which is not necessarily universal or tight anymore; or without scaling (e.g. variables may

already be in the correct range) considering x̂i ∈ {0, ..., X̂i − 1}

x =
n∑

i=1
x̂i

i−1∏
j=1

X̂j mod M (14)

for concatenation of variables (i.e. x̂ = [0 0 0...] implies x = 0, ... x̂ = [(M − 1) 0 0...] implies

x = X̂1 − 1, x̂ = [0 (M − 1) 0...] implies x = (X̂2 − 1)X̂1, ...), which is still universal as long as∏n
i=1 X̂i ≤M and tight as long as

∏n
i=1 X̂i = M .

3.2.1.5 Vector modular training Algorithm 1 depicts how to train a N-vector modular

artificial intelligence. Data exposure for inference and performance improvements are

omitted for simplicity. To cope with multiple inputs, each input is scaled to a specific range

in X and then combined to other inputs like they were indexes of a N-dimensional matrix

being converted to a single index related to elements position in memory. The information

lost during scaling is refined in further layers, as shown in Figure 2. This approach tackles

most significant parts of the number first and the number is refined as needed to not lose

information.

10

Algorithm 1 Training of a vector modular artificial intelligence.

Input
(x̂s, ŷs) ∈ S input x̂s ∈ {0, ..., M − 1}N output ŷs ∈ {0, ..., M − 1}, s = 0, ..., S − 1, sample set

G ∈ N input group size in {2, 3, 4..., ⌊log2 M⌋}

Output
w ∈W trained parameters

∆y ∈ NS training error

1: X0 ←
⋃
s

{x̂s} ▷ starting input set

2: ℓ← 0 ▷ layer counter

3: ℓ̄← logG(M − 1) ▷ maximum refinement layer

4: ∆y ← ŷ ▷ starting output error

5: W← ∅ ▷ starting parameter set

6: while Xℓ ̸= ∅ do

7: Gℓ ←

every combination of |Xℓ| choose G, G < |Xℓ|

{(0, ..., |Xℓ| − 1)}, otherwise
▷ input groups

8: Xℓ+1 ←


⋃

x̂s∈Xℓ

{x̂sG mod M}, ℓ < ℓ̄ and n > 1

∅, otherwise
▷ refined input

9: for n ∈ Gℓ, n ∈ {0, ..., |Xℓ|}ḡ , ḡ = min{G, |Xℓ|} do

10: Xg ←
⌊

M
ḡ

⌋
+

0, g ≥ (M mod ḡ)
1, otherwise

, ∀g = 0, ..., ḡ − 1 ▷ input ranges

11: xs ←
ḡ−1∑
g=0

⌊
x̂s,ng

M − 1
Xg

1 + ϵ

⌋ g−1∏
g′=0

Xg′ , ∀s ▷ input grouping (14)

12: Ps,e ← xe
s mod M , ∀s, e = 0, ..., S − 1 ▷ polynomial space (6)

13: ∆y′
s ← min

s′ : xs′ =xs

∆ys′ , ∀s ▷ consistent error, skip training if ∆y′ = 0

14: w ← P −1∆y′ mod M ▷ incremental training (7)

15: ∆y ← ∆y − Pw ▷ output error reduction, stop if ∆y = 0
16: W←W

⋃
{w} ▷ append parameters

17: end for

18: ℓ← ℓ + 1 ▷ increment layer

19: end while

Algorithm 2 allows to train with a reduced modulus in order to avoid Incomplete input

and output errors. The refinement strategy (shown in Figure 2) is analogous to the one

used in the vector modular training Algorithm 1: cope with the most significant parts first

and then refine as needed. In order to take maximum advantage of this strategy, the input

combination of vector training must be such that lower refined inputs are treated first.

11

M

X1 = 2 log -12M˥˥ log -12M˥˥

M

2 ...log -22M˥˥

M

2 ...log -32M˥˥
...

X2 = 2

log2M˥˥2

Figure 2: Number refinement for M ′ = 2. In order to keep the number in the correct range,
either i. the number is scaled to a proper specific range X (see line 11 in Algorithm 1), or ii. the
M ′ power next to M r̄-remainder (r̄ = ⌈logM′ M⌉) of the number multiplied by M ′r is divided
by M ′r̄−1 (see line 3 in Algorithm 2).

Algorithm 2 Fixed modulus training of a vector modular artificial intelligence.

Input
(x̂s, ŷs) ∈ S input x̂s ∈ {0, ..., M − 1}N output ŷs ∈ {0, ..., M − 1}, s = 0, ..., S − 1, sample set

G ∈ N input group size in {2, 3, 4..., ⌊log2 M⌋}
M ′ ∈ N fixed modulus, a prime number M ′ ≤M

Output
w ∈W trained parameters

∆y ∈ NS training error

1: x̂′ ← [] ▷ starting refined input

2: for r = 0, 1, ..., ⌈logM ′ M⌉ − 1 do

3: x̂′ ←
[
x̂′,

⌊
x̂M ′r mod M ′⌈logM′ M⌉

M ′⌈logM′ M⌉−1

⌋]
▷ refined dataset

4: end for

5: W, ∆y ← MAI
(⋃

s

{(x̂′
s, ŷs)}, G

)
▷ training (Algorithm 1)

3.2.1.6 Efficient vector modular training Given x̂ ∈ {0, ..., X − 1}S×N and ŷ ∈ {0, ..., Y −
1}S , find a group n ∈ {0, ..., N − 1}G, G ≤ N , such that ŷ′ ̸= 0, where ŷ′

s = min
s′ : xs=xs′

ŷs′ ,

xs =
G−1∑
g=0

x̂s,ng Xg , exploring as few combinations as possible among the possible N choose

G.

12

3.2.1.7 Optimal vector architecture The number size in a G-group N-vector M-

modular artificial intelligence of is given by

W = MU , U ≤
⌊logG(M−1)⌋∑

r=0
ur, ur+1 = ur

2 (ur + 3), u0 = N (15)

so that the higher N and M are, the higher W is, and the higher G is, the lower W is.

3.2.1.8 Tensor input and output For N-dimensional tensor input variables xi′ index

by i′
c ∈ {1, ..., mc}, c = 1, ..., N , using Einstein notation, a modular polynomial convolution

parameterization

yj =
M−1∑
m=0

wi,mxm
i′(i,j) mod M (16)

where

i′(ic, jc) = jc + ic − 1, ic ∈ {1, ..., nc}, jc ∈ {1, ..., mc − nc + 1}, c ∈ {1, ..., N} (17)

may be a good choice for reducing the number of parameters or output size, but the

parameterization becomes not universal and not tight. Notice that when nc = mc, ∀c,
the modular polynomial convolution parameterization degenerates into the conventional

modular polynomial parameterization.

3.2.1.9 Uncertain input and output An exact training may be challenging to avoid

overfitting to noisy data, i.e. uncertain input and output, as shown in Figure 3.

0 20 40 60 80 100 120

input, x

0

50

100

o
u

tp
u

t,
 y

Figure 3: An exact model follows whatever the training data is (complete data for x̂ ∈
{0, 1, ..., 126}).

3.2.1.10 Incomplete input and output Interpolation and extrapolation are also a chal-

lenge, as shown in Figure 4.

3.2.1.11 Round off errors

3.2.2 Examples

3.2.2.1 Binary input and output For x, y ∈ {0, 1} a universal parameterization would be

y = w0 + w1x mod 2, w1 ∈ {0, 1}, w0 ∈ {0, 1} (18)

13

0 20 40 60 80 100 120

input, x

-1

0

1

o
u

tp
u

t,
 y

0 20 40 60 80 100 120

input, x

0

50

100

o
u

tp
u

t,
 y

0 20 40 60 80 100 120

input, x

-1

0

1

2

o
u

tp
u

t,
 y

Figure 4: A 0-parameter model for x̂ = (0, 127) and ŷ = (0, 0) (top), and a 2-parameter model
for x̂ = (0, 127) and ŷ = (0, 1) (center) reveals the sensitivity and interpolation problems, which
is solved with a low fixed modulus M = 2 (bottom).

so that

i. w = [0, 0] for x̂ = [0, 1] and ŷ = [0, 0];

ii. w = [0, 1] for x̂ = [0, 1] and ŷ = [0, 1];

iii. w = [1, 1] for x̂ = [0, 1] and ŷ = [1, 0];

iv. w = [1, 0] for x̂ = [0, 1] and ŷ = [1, 1];

and the parameterization is universal and tight.

3.2.2.2 Ternary input and output For x, y ∈ {0, 1, 2} a universal parameterization would

be

y = w0 + w1x + w2x2 mod 3, w2 ∈ {0, 1, 2}, w1 ∈ {0, 1, 2}, w0 ∈ {0, 1, 2} (19)

so that

i. w = [0, 0, 0] for x̂ = [0, 1, 2] and ŷ = [0, 0, 0];

ii. w = [0, 1, 2] for x̂ = [0, 1, 2] and ŷ = [0, 0, 1];

iii. w = [0, 2, 1] for x̂ = [0, 1, 2] and ŷ = [0, 0, 2];

iv. w = [0, 2, 2] for x̂ = [0, 1, 2] and ŷ = [0, 1, 0];

v. w = [0, 0, 1] for x̂ = [0, 1, 2] and ŷ = [0, 1, 1];

vi. w = [0, 1, 0] for x̂ = [0, 1, 2] and ŷ = [0, 1, 2];

14

vii. w = [0, 1, 1] for x̂ = [0, 1, 2] and ŷ = [0, 2, 0];

viii. w = [0, 2, 0] for x̂ = [0, 1, 2] and ŷ = [0, 2, 1];

ix. w = [0, 0, 2] for x̂ = [0, 1, 2] and ŷ = [0, 2, 2];

x. w = [1, 0, 2] for x̂ = [0, 1, 2] and ŷ = [1, 0, 0];

xi. w = [1, 1, 1] for x̂ = [0, 1, 2] and ŷ = [1, 0, 1];

xii. w = [1, 2, 0] for x̂ = [0, 1, 2] and ŷ = [1, 0, 2];

xiii. w = [1, 2, 1] for x̂ = [0, 1, 2] and ŷ = [1, 1, 0];

xiv. w = [1, 0, 0] for x̂ = [0, 1, 2] and ŷ = [1, 1, 1];

xv. w = [1, 1, 2] for x̂ = [0, 1, 2] and ŷ = [1, 1, 2];

xvi. w = [1, 1, 0] for x̂ = [0, 1, 2] and ŷ = [1, 2, 0];

xvii. w = [1, 2, 2] for x̂ = [0, 1, 2] and ŷ = [1, 2, 1];

xviii. w = [1, 0, 1] for x̂ = [0, 1, 2] and ŷ = [1, 2, 2];

xix. w = [2, 0, 1] for x̂ = [0, 1, 2] and ŷ = [2, 0, 0];

xx. w = [2, 1, 0] for x̂ = [0, 1, 2] and ŷ = [2, 0, 1];

xxi. w = [2, 2, 2] for x̂ = [0, 1, 2] and ŷ = [2, 0, 2];

xxii. w = [2, 2, 0] for x̂ = [0, 1, 2] and ŷ = [2, 1, 0];

xxiii. w = [2, 0, 2] for x̂ = [0, 1, 2] and ŷ = [2, 1, 1];

xxiv. w = [2, 1, 1] for x̂ = [0, 1, 2] and ŷ = [2, 1, 2];

xxv. w = [2, 1, 2] for x̂ = [0, 1, 2] and ŷ = [2, 2, 0];

xxvi. w = [2, 2, 1] for x̂ = [0, 1, 2] and ŷ = [2, 2, 1];

xxvii. w = [2, 0, 0] for x̂ = [0, 1, 2] and ŷ = [2, 2, 2];

and the parameterization is universal and tight.

15

4 Case studies

4.1 Fire detection

4.1.1 Detection

4.1.2 Segmentation

4.2 Bus inspection

4.2.1 Nut angle

4.3 First language models

i. concepts development based on physical world and its measures;

ii. connections between concepts to create new concepts and reduce amount of infor-

mation;

iii. switch flips.

4.3.1 Brazil

4.3.2 Brazil and United States

4.3.3 Brazil, United States, Spain and Israel

4.4 Psychology of discourse

A Code

A.1 Modular artificial intelligence

Modular algebra can be conveniently implemented by a container for residue or con-

gruence class, overloading operators in order to use conventional algorithms. Most of

operators are simply common algebra with a remainder at the end, with a notable ex-

ception for division using Euclidean algorithm and a careful power operator to avoid

overflow.

Many spaces are created to allow efficient training and tests, including truth space,

polynomial space, and interleaved polynomial space.

16

The training comprises a simple but hard to code algorithm.

A.1.1 Python

first principles
test driven development
criterion: self contained coded
clue: Grok has accuratly more detailed algorithms

'''References:
[1] A. C. Lisboa. "Artificial intelligence", technical report, Gaia, gaiasd.com/AI.pdf, 2026.
'''

import numpy as np
import sys
import io
import time
import json
import copy

np.set_printoptions(threshold=sys.maxsize)
np.set_printoptions(precision=0, suppress=True)

modular algebra
class modular_residue:

Construction.
def __init__(self, r, M, b=None):

''' Construct a modular residue number.

Args:
r (numpy array of int): residue
M (int): modulus
b (bool, optional): modulus is prime indicator (default is a prime predicate)

Returns:
(modular_residue): a modular residue number

'''

Setup.
self._modulus = M
self._residue = r
self._is_prime = is_prime(M) if b is None else b

Read only attributes.
def residue(self):

return self._residue

def dtype(self):
return str(self._residue.dtype)

def modulus(self):
return self._modulus

def is_prime(self):
return self._is_prime

Operators.
def __setattr__(self,name,value):

Error check.
if name == '_residue':

if not isinstance(value,np.ndarray) or str(value.dtype) not in ['int8', 'int16', 'int32', 'int64']:

17

raise ValueError('Type for residue must be signed integer')
value %= self._modulus

elif name == '_modulus':
if not isinstance(value,int):

raise ValueError('Modulus must be an integer')
elif name == '_is_prime':

if not isinstance(value,bool):
raise ValueError('Is prime indicator must be a boolean')

else:
raise ValueError('Non existing attribute name \'{}\''.format(name))

Setup.
super().__setattr__(name,value)

def __add__(self, other):
Error check.
if isinstance(self,modular_residue) and isinstance(other,modular_residue) and self._modulus != other._modulus:

raise ValueError('Operand modulus must be the same')

Extract info.
bp = self._is_prime if isinstance(self,modular_residue) else other._is_prime # is prime indicator
a = self._residue if isinstance(self,modular_residue) else self # first operand
b = other._residue if isinstance(other,modular_residue) else other # second operand
M = self._modulus if isinstance(self,modular_residue) else other._modulus # modulus

Modular sum.
return modular_residue(a+b, M, bp)

def __radd__(self,other):
return self.__add__(other)

def __neg__(self):
return modular_residue(self._modulus-self._residue, self._modulus, self._is_prime)

def __sub__(self, other):
Error check.
if isinstance(other,modular_residue) and self._modulus != other._modulus:

raise ValueError('Operand modulus must be the same.')

Extract info.
bp = self._is_prime if isinstance(self,modular_residue) else other._is_prime # is prime indicator
a = self._residue if isinstance(self,modular_residue) else self # first operand
b = other._residue if isinstance(other,modular_residue) else other # second operand
M = self._modulus if isinstance(self,modular_residue) else other._modulus # modulus

Modular sum.
return modular_residue(a+M-b, M, bp)

def __rsub__(self,other):
return -(self.__sub__(other)) # there is some switch flip in this overload...

def __mul__(self, other):
Error check.
if isinstance(other,modular_residue) and self._modulus != other._modulus:

raise ValueError('Operand modulus must be the same')

Extract info.
bp = self._is_prime if isinstance(self,modular_residue) else other._is_prime # is prime indicator
a = self._residue if isinstance(self,modular_residue) else self # first operand
b = other._residue if isinstance(other,modular_residue) else other # second operand
M = self._modulus if isinstance(self,modular_residue) else other._modulus # modulus

Modular multiplication.

18

return modular_residue(a*b, M, bp)

def __rmul__(self, other):
return self*other

def __matmul__(self, other):
Error check.
if isinstance(other,modular_residue) and self._modulus != other._modulus:

raise ValueError('Operand modulus must be the same')
if len(self._residue.shape) != 2 or len(other._residue.shape) != 2:

raise ValueError('Operands must be matrices')

Extract info.
bp = self._is_prime if isinstance(self,modular_residue) else other._is_prime # is prime indicator
a = self._residue if isinstance(self,modular_residue) else self # first operand
b = other._residue if isinstance(other,modular_residue) else other # second operand
M = self._modulus if isinstance(self,modular_residue) else other._modulus # modulus

Modular multiplication.
return modular_residue(a@b, M, bp)

def __mod__(self, other):
Error check.
if not isinstance(self,modular_residue):

raise TypeError('Operand must be modular residues')
if not isinstance(other,int):

raise TypeError('Modulus must be an integer')

Extract info.
a = self._residue # residue
M = other # modulus

New modulus
return modular_residue(a%M, M, is_prime(M))

def __pow__(self, other):
Error check.
if isinstance(other,modular_residue) and self._modulus != other._modulus:

raise ValueError('Operand modulus must be the same')
if isinstance(other,np.ndarray) and other.dtype != self._residue.dtype:

other.astype(self._residue.dtype)

Extract info.
bp = self._is_prime if isinstance(self,modular_residue) else other._is_prime # is prime indicator
a = self._residue if isinstance(self,modular_residue) else self # first operand
b = other._residue if isinstance(other,modular_residue) else other # second operand
M = self._modulus if isinstance(self,modular_residue) else other._modulus # modulus
s = a.shape if not isinstance(b,np.ndarray) or sum(a.shape) > sum(b.shape) else b.shape # shape

Efficient power.
if M==1:

r = np.zeros(s)
elif self._is_prime:

r = (a ** (b % (M-1))) % M
else:

r = np.ones(s,dtype=a.dtype) # power
ar = (a%M)*np.ones(s,dtype=a.dtype)# power basis
br = b*np.ones(s,dtype=a.dtype) # power exponent
while np.any(br > 0):

ib = np.where((br % 2) > 0)[0]
r[ib] *= ar[ib]
r[ib] %= M
ar *= ar

19

ar %= M
br //= 2

r[np.logical_and(a==0,b==0)] = 1
r[np.logical_and(a==0,b!=0)] = 0
return modular_residue(r, M, bp)

def __rpow__(self, other):
if isinstance(other,int):

other = modular_residue(np.array([other],dtype=self._residue.dtype), self._modulus, self._is_prime)
else:

raise TypeError('Invalid basis type')
return other.__pow__(self) # there is some switch flip in this overload...

def __truediv__(self, other):
Error check.
if isinstance(other,modular_residue) and self._modulus != other._modulus:

raise ValueError('Operand modulus must be the same')
if isinstance(other,np.ndarray) and other.dtype != self._residue.dtype:

other.astype(self._residue.dtype)

Extract info.
bp = self._is_prime if isinstance(self,modular_residue) else other._is_prime # is prime indicator
a = self._residue if isinstance(self,modular_residue) else self # first operand
b = other._residue if isinstance(other,modular_residue) else other # second operand
M = self._modulus if isinstance(self,modular_residue) else other._modulus # modulus
s = a.shape if not isinstance(b,np.ndarray) or sum(a.shape) > sum(b.shape) else b.shape # shape
ns = len(s) # tensor dimension
if a.shape != b.shape:

st = np.array([1]*ns,dtype=int)
for ins in range(ns):

if a.shape[ins] != b.shape[ins]:
ds = np.array([1]*ns,dtype=int)
if a.shape[ins]==1:

ds[ins] = b.shape[ins]
a = np.tile(a,tuple(ds))

elif b.shape[ins]==1:
ds[ins] = a.shape[ins]
b = np.tile(b,tuple(ds))

else:
raise ValueError('Inconsistent operant sizes')

dtype = a.dtype if isinstance(a,np.ndarray) else b.dtype
n = np.prod(s)

Efficient divide: Euclidean algorithm.
bm = np.vstack(((b.reshape(-1)%M).astype('int64'), np.tile(np.array([M],dtype='int64'),(n)))) # put in range [0, M-1]
x = np.vstack((np.zeros((n),dtype='int64'),np.ones((n),dtype='int64')))
iin = np.where(bm[1,:]!=0)[0]
while sum(iin.shape) > 0:

Euclidean expansion.
q = bm[0,iin] // bm[1,iin] # quotient
bm[:,iin] = np.vstack((bm[1,iin], bm[0,iin]%bm[1,iin]))
x[:,iin] = np.vstack((x[1,iin]-q*x[0,iin],x[0,iin]))
iin = iin[bm[1,iin]!=0]

Error check.
if M!=1 and np.any(np.logical_and(bm[0,:]!=1,b.reshape(-1)!=0)):

raise ValueError('Divisor and modulus must be coprime')

Output arguments.
return modular_residue((np.array([a],dtype=dtype) if isinstance(a,int) else a)*x[1,:].reshape(s), M, bp)

def __rtruediv__(self, other):
if isinstance(other,int):

20

other = np.array([other],dtype=self._residue.dtype)
if isinstance(other,np.ndarray):

return modular_residue(other, self._modulus, self._is_prime) / self._residue # there is some switch flip in this overload...
else:

raise TypeError('Not implemented operator for these operand types')

def __floordiv__(self, other):
return self.__truediv__(other)

def __rfloordiv__(self, other):
return self.__floordiv__(other) # there is some switch flip in this overload... and every non-commutative operator

def __eq__(self, other):
a = self._residue if isinstance(self,modular_residue) else self # first operand
b = other._residue if isinstance(other,modular_residue) else other # second operand
return a == b

def __ne__(self, other):
a = self._residue if isinstance(self,modular_residue) else self # first operand
b = other._residue if isinstance(other,modular_residue) else other # second operand
return a != b

def __lt__(self, other):
a = self._residue if isinstance(self,modular_residue) else self # first operand
b = other._residue if isinstance(other,modular_residue) else other # second operand
return a < b

def __le__(self, other):
a = self._residue if isinstance(self,modular_residue) else self # first operand
b = other._residue if isinstance(other,modular_residue) else other # second operand
return a <= b

def __gt__(self, other):
a = self._residue if isinstance(self,modular_residue) else self # first operand
b = other._residue if isinstance(other,modular_residue) else other # second operand
return a > b

def __ge__(self, other):
a = self._residue if isinstance(self,modular_residue) else self # first operand
b = other._residue if isinstance(other,modular_residue) else other # second operand
return a >= b

def __getitem__(self, key):
return modular_residue(self._residue[key], self._modulus, self._is_prime)

def __setitem__(self, key, value):
value = value._residue if isinstance(value,modular_residue) else value
self._residue[key] = value

def __str__(self):
d = int(np.ceil(np.log10(self._modulus)))
fmt = 'mod\n{{:{:d}d}}'.format(d+1)
if self._is_prime:

fmt += ' (prime)'
fmt += ' ({})'.format(str(self._residue.dtype))
return print_to_string(self._residue) + fmt.format(self._modulus)

def tile(self,s):
r = np.tile(self._residue,s)
return modular_residue(r, self._modulus, self._is_prime)

def shape(self):
return self._residue.shape

21

def len(self):
return len(self._residue)

def reshape(self,*args):
r = self._residue.copy()
return modular_residue(r.reshape(*args), self._modulus, self._is_prime)

def hstack(*args):
return modular_residue(np.hstack(tuple([arg._residue for arg in args])), args[0]._modulus, args[0]._is_prime)

def vstack(*args):
return modular_residue(np.vstack(tuple([arg._residue for arg in args])), args[0]._modulus, args[0]._is_prime)

def argmax(self,*args):
return np.argmax(self._residue,*args)

def min(self,*args):
if args:

return modular_residue(np.min(self._residue,*args),self._modulus,self._is_prime)
else:

return np.min(self._residue)

def max(self,*args):
if args:

return modular_residue(np.max(self._residue,*args),self._modulus,self._is_prime)
else:

return np.max(self._residue)

def transpose(self):
return modular_residue(np.transpose(self._residue),self._modulus,self._is_prime)

def astype(self,dtype):
return modular_residue(self._residue.astype(dtype),self._modulus,self._is_prime)

def enumerate(self,index=0):
return enumerate(self._residue,index)

def print_to_string(*args, **kwargs):
output = io.StringIO()
print(*args, file=output, **kwargs)
contents = output.getvalue()
output.close()
return contents

Spaces.
def truth_space(S,M,dtype='int64'):

Every possible arange of S samples in modulus M, for universality and tightness tests (complete output space).
y = np.zeros((0,1))
for i in range(S):

y = np.vstack((np.tile(np.arange(0,M).reshape(-1,1),(1,M**i)).reshape(-1),np.tile(y,(1,M))))
return modular_residue(y.astype(dtype),M)

def polynomial_space(x,E,S):
Power of modular residue samples at given exponents, for single input training.
P = modular_residue(np.tile(x.residue().reshape(-1,1),(1,S)),x.modulus(),x.is_prime())
if isinstance(E,modular_residue):

E = E.residue()
for i, e in enumerate(E):

P[:,i] **= e
return P

22

Training.
def mles_solve(A,b):

Solve modular linear equation system Ax = b using Gaussian elimination.

Error check.
if not isinstance(A,modular_residue) or not isinstance(b,modular_residue):

raise TypeError('Tensors must be modular residues')
if len(A.shape()) != 2 or len(b.shape()) != 2:

raise ValueError('Tensors in linear system must be matrices')
if A.shape()[0] != b.shape()[0]:

raise ValueError('Matrices must have the same number of rows')

Cardinalities.
M,N = A.shape() # number of rows and inputs
if M > N:

raise ValueError('Over determined system of equations')
M,O = b.shape() # number of rows and outputs

Gauss elimination algorithm.
T = A.hstack(b) # tableau
p = np.arange(0,M) # pivot rows
for k in range(M):

i = k + T[p[k:],k].argmax() # pivot row
p[k], p[i] = p[i], p[k] # swap pivot to current iteratino position
T[p[k],k:] /= T[p[k],k:k+1] # normalize pivot row
T[p[k+1:],k:] -= T[p[k]::M,k:]*T[p[k+1:],k:k+1] # elimination

Backward substitution.
T = T[p,:] # sort tableau
x = T[:,N:] if M==N else T[:,N:].vstack(modular_residue(np.zeros(N-M,O),A.modulus(),A.is_prime(),dtype=A.dtype)) # initialize solution
for k in range(0,M-1):

x[0:M-k-1,:] -= T[0:M-k-1,M-k-1:M-k]*x[M-k-1:M-k,:]
return x

def fit(xh,yh,M=None,X=None,Eh=None,dtype=None,window=None):
''' Fit input to output using modular artificial intelligence model.

Args:
xh (numpy array or moduluar_residue): input samples
yh (numpy array or moduluar_residue): output samples
M (int, optional): specify modulus
X (tuple of int, optional): specify input range
Eh (tuple of numpy array or modular_residue): specify probing exponents
dtype (str, optional): specify signed integer data type

Retrun:
(dict): modular artificial intelligence with fields:

dtype (str): data type
exponents (moduluar_residue): probing exponents for training space
input (dict): input configuration with fields:

encoder (function): input encoder
minimum (numpy array): input minimum values
maximum (numpy array): input minimum values
size (tuple of int): input size

model (string): AI model
modulus (int): modulus
output (dict): output configuration with fields:

decoder (function): output decoder
minimum (numpy array): output minimum values
maximum (numpy array): output minimum values

23

size (tuple of int): output size
parameters (modular_residue): parameters for inference
samples (int): number of samples
spacer (function): create space for training
time (float): elapsed training time [s]

'''

Error check.
if not isinstance(xh,(np.ndarray,modular_residue)):

raise TypeError('Input must be a numpy array or a modular residue')
if not isinstance(yh,(np.ndarray,modular_residue)):

raise TypeError('Output must be a numpy array or a modular residue')
if Eh is not None and not isinstance(Eh,(np.ndarray,modular_residue)):

raise ValueError('Probing exponents must be in a tuple of either numpy arrays or modular residues')
sx = xh.shape if isinstance(xh,np.ndarray) else xh.shape()
if not sx:

raise ValueError('Empty input data not suppoted')
sy = yh.shape if isinstance(yh,np.ndarray) else yh.shape()
if not sy:

raise ValueError('Empty output data not suppoted')
if sx[0] != sy[0]:

raise ValueError('Inconsistent number of input and output samples')
if M is not None and not isinstance(M,int):

raise TypeError('Modulus must be an integer')
if M is not None and M < 1:

raise ValueError('Modulus must be a positive integer')
if isinstance(xh,modular_residue) and isinstance(yh,modular_residue) and xh.modulus() != yh.modulus():

raise ValueError('Input and output modulus must be the same')
if X is not None and (not isinstance(X,(tuple,list,np.ndarray)) or not all([isinstance(x,int) for x in X])):

raise TypeError('Input range must be a tuple of integers')

Cardinalities.
if len(sx) == 1 or sx[1]==1:

Scalar model.
N = (1,) # number of input variables
O = (1,) if len(sy)==1 else (sy[1],) # number of input variables
xh = xh if len(sx)==2 else xh.reshape(-1,1) # canonical output form
yh = yh if len(sy)==2 else yh.reshape(-1,1) # canonical output form
S = sx[0] # number of samples
model = 'MAI' # AI model

elif len(sx) == 2:
Vector model.
S = sx[0] # number of samples
N = (sx[1],) # number of input variables
O = (1,) if len(sy)==1 else (sy[1],) # number of input variables
yh = yh if len(sy)==2 else yh.reshape(-1,1) # canonical output form
model = 'VMAI' # AI model

else:
raise ValueError('Unsupport data')

if M is None:
if isinstance(xh,modular_residue):

M = xh.modulus()
xmin = np.array([xh[:,n].min() for n in range(N[0])]) # minimum input value
xmax = np.array([xh[:,n].max() for n in range(N[0])]) # maximum input value
if isinstance(yh,modular_residue):

ymin = np.array([yh[:,o].min() for o in range(O[0])]) # minimum output value
ymax = np.array([yh[:,o].max() for o in range(O[0])]) # maximum output value

else:
ymin = np.array([np.min(yh[:,o]) for o in range(O[0])]) # minimum output value
ymax = np.array([np.max(yh[:,o]) for o in range(O[0])]) # maximum output value

elif isinstance(yh,modular_residue):
M = yh.modulus()
xmin = np.array([np.min(xh[:,n]) for n in range(N[0])]) # minimum input value

24

xmax = np.array([np.max(xh[:,n]) for n in range(N[0])]) # maximum input value
ymin = np.array([yh[:,o].min() for o in range(O[0])]) # minimum output value
ymax = np.array([yh[:,o].max() for o in range(O[0])]) # maximum output value

else:
xmin = np.array([np.min(xh[:,n]) for n in range(N[0])]) # minimum input value
xmax = np.array([np.max(xh[:,n]) for n in range(N[0])]) # maximum input value
ymin = np.array([np.min(yh[:,o]) for o in range(O[0])]) # minimum output value
ymax = np.array([np.max(yh[:,o]) for o in range(O[0])]) # maximum output value
M = next_prime(max([np.prod(xmax+1),np.max(ymax+1)])) # modulus

elif not is_prime(M):
raise ValueError('Modulus must be a prime number')

if S <= N[0]:
raise ValueError('Not enough samples')

if S > M:
raise ValueError('Too many samples')

if X is None:
X = xmax + 1 # input range

Type definition.
if not isinstance(xh,modular_residue):

xh = modular_residue(xh,M,True)
if np.unique(xh.residue(),axis=0).shape[0] < S:

raise ValueError('Input must be unique')
if not isinstance(yh,modular_residue):

yh = modular_residue(yh,M,True)
if dtype is None:

dtype = 'int64'
if M < 2**7:

dtype = 'int8'
elif M < 2**15:

dtype = 'int16'
elif M < 2**31:

dtype = 'int32'
elif dtype not in ['int8', 'int16', 'int32', 'int64']:

raise ValueError('Data type must be a signed integer')
xh.astype(dtype)
xh %= M
yh.astype(dtype)
yh %= M
xmin.astype(dtype)
xmax.astype(dtype)
ymin.astype(dtype)
ymax.astype(dtype)
if not isinstance(X,np.ndarray):

X = np.array(X,dtype=dtype)

Polynomial powers.
if Eh is None:

Exponent definition.
Eh = modular_residue(np.arange(S,dtype=dtype),M,True)

else:
Error check.
E = Eh % M
if E.shape[0] != S:

raise ValueError('There must be a unique probing exponent for each sample')
Eu = np.unique(E)
if Eu.shape[0] != E.shape[0]:

raise ValueError('Probing exponents must be unique in modulus')
Eh = modular_residue(E.astype(dtype),M,True)

Training.
t = time.perf_counter(); # starting training time
Cx = lambda x, M=M, N=N, X=X, dtype=dtype : encode(x,M,N,X,dtype) # vector input encoder

25

Cy = lambda y : decode(y) # output decoder
Px = lambda x, E=Eh, S=S : polynomial_space(x,E,S) # input polynomial
P = Px(Cx(xh)) # polynomial coefficients
w = mles_solve(P,yh) # training itself
t = round(time.perf_counter() - t,6) # elapsed training time

Output arguments.
return {'model': model, 'parameters': w, 'timing': t, 'modulus': M, 'samples': S, 'dtype': dtype,

'spacer': Px, 'exponents': Eh,
'input': {'encoder': Cx, 'minimum': xmin, 'maximum': xmax, 'size': N},
'output': {'decoder': Cy, 'minimum': ymin, 'maximum': ymax, 'size': O}

}

def encode(x,M,N,X,dtype):
x = x.astype(dtype)
x = x if isinstance(x,modular_residue) else modular_residue(x,M,True)
if len(x.shape()) == 1:

x = x.reshape(-1,1)
return modular_residue(

np.sum(x.residue()*(np.cumprod(np.append(1,X[0:-1])).reshape(1,-1)),axis=1),
x.modulus(),
x.is_prime()

)

def decode(y):
return y

def infer(x,model):
''' Modular artificial intelligence inference.

Args:
x (numpy array or modular_residue): input
model (dict): MAI model

Returns:
(modular_residue): model output given the input

'''

MAI inference.
return model['output']['decoder'](model['spacer'](model['input']['encoder'](x))@model['parameters'])

def save_model(model,file=None):
''' Convert MAI model to JSON string.

Args:
form (dict): model dictionary
file (str, optional): file name to save JSON string (defaut None)

Returns:
(str): JSON string for the model

'''

Data type conversion.
model = copy.deepcopy(model) # avoid changing model outside this function
model['parameters'] = model['parameters'].residue().astype(int).tolist()
model['exponents'] = model['exponents'].residue().tolist()
model['input']['minimum'] = model['input']['minimum'].tolist()
model['input']['maximum'] = model['input']['maximum'].tolist()
model['output']['minimum'] = model['output']['minimum'].tolist()
model['output']['maximum'] = model['output']['maximum'].tolist()
del model['input']['encoder']
del model['output']['decoder']
del model['spacer']

26

Form dictionary o JSON string.
json_string = json.dumps(model, indent=4, ensure_ascii=False)

Save model JSON to file.
if file is not None:

with open(file, 'w') as fid:
json.dump(model, fid, indent=4, ensure_ascii=False)

Output arguments.
return json_string

def load_model(file):
''' Load MAI model from file.

Args:
file (str): file name to load JSON string into dictionary

Returns:
(dict): model dictionary

'''

Load model dictionary from JSON file.
with open(file, 'r') as fid:

Load model from file.
model = json.load(fid)

Data type conversion.
dtype = model['dtype'] # data type
M = model['modulus'] # modulus
S = model['samples'] # number of samples
model['parameters'] = modular_residue(

np.array(model['parameters'],dtype=dtype),
M,
True

)
model['exponents'] = modular_residue(np.array(model['exponents'],dtype=dtype),M,True)
E = model['exponents']
for end in ['input', 'output']:

for limit in ['minimum', 'maximum']:
model[end][limit] = np.array(model[end][limit],dtype=dtype)

xmin = model['input']['minimum']
xmax = model['input']['maximum']
ymin = model['output']['minimum']
ymax = model['output']['maximum']
model['input']['size'] = tuple(model['input']['size'])
N = model['input']['size']
model['output']['size'] = tuple(model['output']['size'])
O = model['output']['size']
model['spacer'] = lambda x, E=E, S=S : polynomial_space(x,E,S)
model['input']['encoder'] = lambda x, M=M, N=N, X=xmax+1, dtype=dtype : encode(x,M,N,X,dtype)
model['output']['decoder'] = lambda y : decode(y)

Output arguments.
return model

Prime numbers.
def is_prime(n):
Is prime predicate.

if n < 4:
return True

27

imax = int(np.ceil(np.sqrt(n)))
for i in range(2,imax+1):

if (n % i) == 0:
return False

return True

def next_prime(n):
Find next prime given a starting number.

while not is_prime(n):
n += 1

return n

Unit tests.
def test_wrong_instance():

try:
modular_residue([1,2],2)
assert False

except:
pass

def test_wrong_instance():
try:

for dtype in ['int8', 'int16', 'int32', 'int64']:
modular_residue(np.array([1,2],dtype=dtype),2,True)

except:
assert False

def test_attr():
a = modular_residue(np.array([0,1,2,3,4,5],dtype='int64'),5,True)
assert np.all(a[1:3] == np.array([1,2],dtype='int64'))
a[1::2] = 2
assert np.all(a == np.array([0,2,2,2,4,2],dtype='int64'))

def test_sum():
a = modular_residue(np.array([0,1,2,3,4,5],dtype='int64'),5,True)
b = modular_residue(np.array([2,2,2,2,2,2],dtype='int64'),5,True)
c = modular_residue(np.array([2,3,4,0,1,2],dtype='int64'),5,True)
assert np.all(a + b == c)
assert np.all(a + b._residue == c)
assert np.all(a + 2 == c)
assert np.all(2 + a == c)

def test_sub():
a = modular_residue(np.array([0,1,2,3,4,5],dtype='int64'),5,True)
b = modular_residue(np.array([2,2,2,2,2,2],dtype='int64'),5,True)
c = modular_residue(np.array([3,4,0,1,2,3],dtype='int64'),5,True)
assert np.all(a - b == c)
assert np.all(-(b - a) == c)
assert np.all(a - b._residue == c)
assert np.all(a - 2 == c)
assert np.all(-(2 - a) == c)

def test_mul():
da = np.array([0,1,2,3],dtype='int64')
a = modular_residue(np.array([2**32]*4,dtype='int64')+da,5,True)
b = modular_residue(np.array([2**32,2**33,2**34,2**35],dtype='int64'),5,True)
c = modular_residue(np.array([1,4,2,2],dtype='int64'),5,True)
assert np.all(a*b == c)
assert np.all(a*b._residue == c)
assert np.all((2**32)*a == da+1)
assert np.all(a*(2**32) == da+1)

28

def test_pow():
a = modular_residue(np.array([0]+[3]*6,dtype='int64'),5,True)
b = np.array([0,0,1,2,3,4,5],dtype='int64')
c = modular_residue(np.array([1,1,3,4,2,1,3],dtype='int64'),5,True)
assert np.all(a**b == c)
assert np.all(a**5 == a)
a = modular_residue(np.array([0]+[3]*6,dtype='int64'),5,False)
assert np.all(a**b == c)
assert np.all(a**5 == a)

def test_div():
a = modular_residue(np.array([1,2,3,4,3],dtype='int64'),5,True)
b = np.array([1,1,1,1,2],dtype='int64')
c = np.array([1,3,2,4,4],dtype='int64')
assert np.all(1/(1/a) == a)
assert np.all((1/a)*b == c)

def test_prime_predicate():
N = [4, 8, 11, 47, 31243, 31249]
B = [False, False, True, True, False, True]
for b,n in zip(B,N):

assert is_prime(n) == b

def test_spaces():
assert np.all(truth_space(2,2) == np.array([[0, 0, 1, 1], [0, 1, 0, 1]]))
assert np.all(truth_space(2,3) == np.array([[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]]))
x = modular_residue(np.array([0,1,2],dtype='int8'),3)
assert np.all(polynomial_space(x,[0,1,2],3) == np.array([[1,0,0], [1,1,1], [1,2,1]]))

def test_mles_solve():
dtype = 'int64'
for M in [2, 3, 5]:

P = polynomial_space(modular_residue(np.arange(M,dtype=dtype),M),np.arange(M),M)
y = truth_space(M,M,dtype)
w = mles_solve(P,y)
assert np.all(P@w == y)

def test_mai():
for M in [2, 3]: # modulus

xh = np.arange(M) # input
yh = truth_space(M,M) # all possible outputs
model = fit(xh,yh) # MAI training
assert np.all(infer(xh,model) == yh)

def test_vmai():
N = 2 # number of input variables
for X in [2, 3]: # range

xh = truth_space(N,X).transpose() # input
S = xh.shape()[0] # number of samples
yh = truth_space(S,X) # all possible outputs
M = next_prime(S)
xh %= M # fix modulus
yh %= M # fix modulus
model = fit(xh,yh) # VMAI training
assert np.all(infer(xh,model) == yh)

def test_cmai():
N = 2 # number of input variables
for X in [2, 3]: # range

xh = truth_space(N,X).transpose() # input
S = xh.shape()[0] # number of samples
yh = truth_space(S,X) # all possible outputs

29

M = next_prime(S)
xh %= M # fix modulus
yh %= M # fix modulus
model = fit(xh,yh) # CMAI training
assert np.all(infer(xh,model) == yh)

def unit_test():
List functions in unit test file.
functions = [test_wrong_instance, test_wrong_instance, test_attr,

test_sum, test_sub, test_mul, test_div, test_pow,
test_prime_predicate, test_spaces, test_mles_solve,
test_mai, test_vmai, test_cmai] # all unit test functions

Tests.
format_str = '{{:{}s}} test {{}} of {{}}\r'.format(len(functions)+1) # formatting string
pass_fail_str = '' # pass or fail string
failures = [] # test failures
for counter, function in enumerate(functions):

Perform test.
try:

function()
pass_fail_str += '.'

except Exception as e:
pass_fail_str += 'F'
failures.append(function)

print(format_str.format(pass_fail_str, counter+1, len(functions)), end='', flush=True) # progress

Report.
print(format_str.format(pass_fail_str, len(functions), len(functions)), flush=True)
for fail in failures:

print('fail at',fail.__name__)

Known specifications.
print('\nKnown specifications:')
print('1. modulus is a positive integer.')

Test scripts.
if __name__ == "__main__":

if len(sys.argv) > 1 and sys.argv[1].lower() == '-d':
Debug tests (temporary coded).
if False:

print(truth_space(2,2))
print(truth_space(2,3))
x = modular_residue(np.array([0,1,2],dtype='int8'),3)
print(polynomial_space(x,[0,1,2],3))

if True:
M = 2 # modulus
xh = np.arange(M) # input
print('xh =',xh)
yh = truth_space(M,M) # all possible outputs
print('yh =',yh)
model = fit(xh,yh) # MAI training
print('y =',infer(xh,model))
save_model(model,'mai.json')
model = load_model('mai.json')
print('y =',infer(xh,model))

if True:
X = 2 # input variable space
N = 2 # number of input variables
xh = truth_space(N,X).transpose() # input
S = xh.shape()[0] # number of samples

30

yh = truth_space(S,X) # all possible outputs
M = next_prime(S)
xh %= M # fix modulus
yh %= M # fix modulus
print('xh =',xh)
print('yh =',yh)
model = fit(xh,yh) # VMAI training
print('w =',model['parameters'])
print('y =',infer(xh,model))
save_model(model,'vmai.json')
model = load_model('vmai.json')
print('y =',infer(xh,model))

else:
Unit tests.
unit_test()

The project configuration file is given by

[install]
use_pep517 = true

[build-system]
requires = ["setuptools >= 64"]
build-backend = "setuptools.build_meta"

[project]
name = "MAI"
version = "0.1"
requires-python = "==3.10.11"
dependencies = [

"numpy==1.23.5"
]

A.1.2 Matlab

function [model,info] = mai_train(xh,yh,options)
%MAI_TRAIN Training of a modular artificial intelligence.
% MODEL = MAI_TRAIN(X,Y) returns the modular artificial inteligence model
% MODEL for the training set of input X and output Y pairs, comprised by
% a struct with the fields:
% decoder: output encoder function
% exponents: polynomial space exponents for inference
% encoder: input encoder function
% error: model training error
% infer: the inference function
% inputs: input variable indexing for inference
% parameters: the artificial intelligence trained parameters
% refined: input refined variable indicator for inference
%
% ... = MAI_TRAIN(X,Y,OPTIONS) allows to specify options OPTIONS for
% training:
% check: extra error check indicator {false, true} (default false)
% group_size: input group size {2, 3, ...} (default 2)
% modulus: fixed training modulus {1, 2, 3, 5, 7, 11, ...} (default 0)
% refined: refinement indicator for training {false, true} (default true)
% verbose: verbosity level {0, 1, 2...} (default 0)
%
% [MODEL,INFO] = MAI_TRAIN(...) also returns a struct with training
% information INFO containing the fields:
% error: the training error at each layer

31

% grouping: the group size used in the training
% groups: the number of group at each layer
% modulus: the modulus used in the modular algbra during training
% parameters: the number of parameters at each layer
% samples: the number of samples used in the training
%
% Example:
% M = 7; % modulus
% xh = (0:M-1)'; % input training set
% yh = randi(M,M,1)-1; % output training set
% model = mai_train(xh,yh); % serial training
% [model.infer(xh), yh] % parallel inference unit test
%
% See also NEXT_PRIME, MODULAR_RESIDUE, POLYNOMIAL_SPACE.

%#ok<*AGROW>

% I hope my life worths a litte bit less than R$10,00: my dad is not easy
% :)

% criterion: hard coded

% input arguments
if nargin < 3, options = struct; end
if ~isfield(options,'verbose'), options.verbose = 0; end
if ~isfield(options,'refined'), options.refined = true; end
if ~isfield(options,'group_size'), options.group_size = 2; end
if ~isfield(options,'check'), options.check = false; end
if ~isfield(options,'modulus'), options.modulus = 0; end
if ~isfield(options,'input_step'), options.input_step = 0; end
if ~isfield(options,'best_error_reduction'), options.best_error_reduction = true; end

% parameters
S = size(xh,1); % number of samples
N = size(xh,2); % number of inputs
Ns = options.input_step; if ~Ns, Ns = N; end % input step
G = options.group_size; % grouping in each layer
M = next_prime(max([S;2^min(G,Ns);xh(:)+1;yh(:)+1]),1); % modulus
if options.modulus

if options.modulus < M
Mp = options.modulus; % fixed modulus
rmax = ceil(log(max([xh(:);yh(:)])+1)/log(Mp)); % maximum refinement level
M = Mp^rmax; % modulus
refiners = {}; % input refiner function
xhr = zeros(S,0); % refined input
for r = 1:rmax

refiners{r} = @(x)floor(rem(x*Mp^(r-1),M)/ceil(M/Mp));
xhr = [xhr, refiners{r}(xh)]; % refine input

end
options.input_step = N; % lower refinement priority
options.modulus = 0; % no modulus specification
[model,info] = mai_train(xhr,yh,options);
model.refiners = refiners;
model.infer = @(x)model.decoder(...

infer(model.encoder(x),...
model.inputs,...
model.refiners,...
model.refined,...
model.parameters,...
model.exponents,...
options.group_size));

return
else

32

M = next_prime(options.modulus);
end

end
lmax = M-1; % maximum refinement layer

% data
xlim = [min(xh(:)) max(xh(:))];
if any(rem(xh(:),1))

encoder = @(x)floor((x-xlim(1))/(xlim(2)-xlim(1))/(1+eps)*M);
else

encoder = @(x)x;
end
ylim = [min(yh(:)) max(yh(:))];
if any(rem(yh(:),1))

yh = floor((yh-ylim(1))/(ylim(2)-ylim(1))/(1+eps)*M);
decoder = @(y)y/(M-1)*(ylim(2)-ylim(1)) + ylim(1);

else
decoder = @(y)y;

end
xh = modular_residue(encoder(xh),M,true); % input
yh = modular_residue(decoder(yh),M,true); % output

% training
Xh = {xh}; % input through layers
ey = yh; % current output error
info = struct('modulus',M,'samples',S,'grouping',G,...

'inputs',N,'groups',0,'parameters',0,...
'error',sum(ey.residue));

Ni = N; % number of current inputs
E = 0:S-1; % exponents
model = struct('parameters',modular_residue(zeros(S,0),M),...

'inputs',{{num2cell(1:N)}},'refined',{{true(1,N)}},...
'refiners',{{}},'infer',@(x)0,'exponents',E,...
'encoder',encoder,'decoder',decoder,'xlim',xlim,'ylim',ylim);

while Ni
% input groups
gmax = min([Ns,Ni,G]); % maximum group number
ng = nchoosek(Ni,gmax); % number of groups
info.groups(1,end+1) = ng; % append number of groups

% inputs
if options.refined && N > 1 && numel(Xh) < lmax

Xh(1,end+1) = {Xh{end}*G};
model.inputs(1,end+1) = {num2cell(1:size(Xh{end-1},2))};
model.refined(1,end+1) = {true(1,size(Xh{end-1},2))};

else
Xh(1,end+1) = {modular_residue(zeros(S,0),M)};
model.inputs(1,end+1) = {{}};
model.refined(1,end+1) = {[]};

end

% training iterations
info.parameters(end+1) = 0;
info.error(end+1) = sum(ey.residue);
if options.verbose > 0, fprintf('\n%3d inputs starting with error %6d...\n',Ni,info.error(end)), end
X = subsizes(M,gmax); % input fair subsizes: make sum(X) == M-1
xs = scale(Xh{end-1}.residue,M,X); % scaled input
for ig = 1:ng

% choice for error reduction
if options.best_error_reduction

[g,dy,xhe,eyr] = best_reduction(xs,ey,gmax,M,X);
else

[g,dy,xhe,eyr] = search_non_null_error_reduction(xs,ey,gmax,M,X);

33

end
if ~dy, break, end

% reduce error
P = polynomial_space(xhe,E); % input polynomial space
if options.verbose > 1, tic,fprintf('Solving a %d x %d modular system (L%02d G%03d-%03d)...',size(P,1),size(P,2),numel(Xh)-1,ig,ng), end
w = P\eyr; % parameters
yw = P*w; % next input
if options.check && any(yw ~= eyr), error('Could not solve modular equation system'), end
eyn = ey - yw; % update output error
errorn = sum(eyn.residue); % new overal error
if errorn < info.error(end)

ey = eyn;
Xh{end}(:,end+1) = yw;
model.parameters(:,end+1) = w;
model.inputs{end}(1,end+1) = {g};
model.refined{end}(1,end+1) = false;
info.error(end) = errorn;
info.parameters(end) = info.parameters(end) + nnz(w);

end
if options.verbose > 1, fprintf(' error %6d in %6.3fs\n',info.error(end),toc), end
if ~info.error(end), break, end
if options.verbose > 0 && ~rem(ig,1e4), fprintf(' %6d of %6d groups analyzed\n',ig,ng), end

end
info.inputs(1,end+1) = size(Xh{end},2); % append number of inputs
if ~info.error(end), break, end
if Ni == 1, break, end
Ni = size(Xh{end},2); % number of current inputs

end
model.infer = @(x)decoder(infer(...

model.encoder(x),...
model.inputs,...
model.refiners,...
model.refined,...
model.parameters,...
model.exponents,...
options.group_size));

model.error = ey;
model.cascade = Xh;
end

function y = infer(x,i,r,t,w,E,G)
% cardinalities
nx = size(x,1); % number of inputs
nl = numel(i)-1; % number of layers
M = w.modulus; % modulus

% input refinement
if ~isempty(r)

xr = r{1}(x);
for ir = 2:numel(r)

xr = [xr, r{ir}(x)];
end
x = xr;

end
n = size(x,2); % number o variables

% exponent pruning
ik = find(any(w.residue,2));
w = w(ik,:);
E = E(ik);

34

% inference
Xs = {modular_residue(x,M,true)}; % input
xw = modular_residue(zeros(nx,0),M,true); % inputs
y = modular_residue(zeros(nx,1),M,true); % output
iw = 0; % parameter counter
for il = 1:nl

Xs{1,il+1} = Xs{il}*G;
for ixw = 1:numel(t{il+1})

if n == 1 || ~t{il+1}(ixw)
X = subsizes(M,numel(i{il+1}{ixw}));
xs = scale(Xs{il}.residue,M,X);
xw(:,end+1) = group(xs(:,i{il+1}{ixw}),M,X);
P = polynomial_space(modular_residue(round(xw.residue(:,end)),M),E);
iw = iw + 1;
y = y + P*w(:,iw);
Xs{il+1}(:,end+1) = y;

end
end

end
y = y.residue;
end

function i = subs2ind(S,I)
if isscalar(S)

o = cumprod([1,repmat(S,1,size(I,2))]); % offset
else

o = cumprod([1,S]); % offset
end
for id = 2:size(I,2)

I(:,id) = I(:,id).*o(id);
end
i = sum(I,2); % indexes
end

function Xi = subsizes(M,N)
Xi = floor(M^(1/N));
end

function x = scale(x,M,X)
if isscalar(X)

x = floor(x/(M-1)/(1+eps)*X);
else

x = floor(x/(M-1)/(1+eps)*diag(X));
end
end

function xg = group(x,M,X)
xg = modular_residue(subs2ind(X,x),M);
end

function ix = search_non_null_error_reduction(xh,yh,G)
iz = find(~yh);

35

for i = iz'
for n = 1:size(xh,2)

xh(xh(:,n)==xh(i,n),n) = 0;
end

end
b = any(xh,1);
ix = find(b);
if G <= numel(ix)

[~,is] = sort((xh(:,ix)>0)'*yh);
ix = ix(is(end:-1:1));
ix = ix(1:G);

elseif ~isempty(ix)
nix = find(~b);
ix = [ix nix(1:G-numel(ix))];

end
end

function [gb,dyb,xheb,yheb] = best_reduction(xh,yh,G,M,X)
g = nchoosek(1:size(xh,2),G);
dyb = 0;
gb = [];
xheb = [];
yheb = [];
for ig = 1:size(g,1)

xhe = group(xh(:,g(ig,:)),M,X);
[xhe,yhe] = prune_error(xhe,yh);
dy = sum(yhe.residue);
if dy > dyb

xheb = xhe;
yheb = yhe;
dyb = dy;
gb = g(ig,:);

end
end
end

function [xh,yh] = prune_error(xh,yh)
[~,iu,ju] = unique(xh.residue); % unique encoded input
yh = accumarray(ju,yh.residue,[numel(iu),1],@(x)min(x)); % minimum error
yh = modular_residue(yh(ju),xh.modulus);
end

function p = next_prime(n,s)
if nargin < 2, s = 1; end
p = n;
while ~is_prime(p)

p = p + s;
end
end

function b = is_prime(n)
b = true;
for d = 2:n^.5

if ~rem(n,d)
b = false;

36

break
end

end
end

function Px = polynomial_space(x,X)
if nargin < 2, X = 0:size(x,1)-1; end
Px = repmat(x,[1,numel(X)]);
for i = 1:numel(X)

Px(:,i) = x.^X(i);
end
end

% criterion: long coded

classdef modular_residue
%MODULAR_RESIDUE Number in modular algebra.
%
% MODULAR_RESIDUE properties:
% isfinite - finite field indicator
% modulus - the modulus
% residue - the residue itself
%
% MODULAR_RESIDUE methods:
% modular_residue - construct a number in modular algebra
%
% Example: linear modular equations
% M = 2; % modulus
% X = modular_residue([0;1],M); % input
% Y = modular_residue([0,0,1,1;0,1,0,1],M); % output
% W = [ones(2,1) X] \ Y % universal weights and bias
%
% See also INTERVAL, DOUBLE.

properties
%The residue itself.
residue

%The modulus.
modulus

%Finite field indicator.
isfinite

end

methods
% setters and getters
function value = get.residue(r)

value = r.residue;
end

function r = set.residue(r,value)
% error check
if ~isnumeric(value) || ~isreal(value)

error('Residue must be real numbers.');
end

% setup
r.residue = rem(value,r.modulus); %#ok<MCSUP>

37

in = find(r.residue < 0);
r.residue(in) = r.residue(in) + r.modulus; %#ok<MCSUP>

end

function value = get.modulus(r)
value = r.modulus;

end

function r = set.modulus(r,value)
% error check
if ~isnumeric(value) || ~isreal(value) || ~isscalar(value)

error('Modulus must be a positive integer.');
end

% setup
r.modulus = value;

end

% constructor
function r = modular_residue(n,M,b)

%MODULAR_RESIDUE Construct a number in modular algebra.
% R = MODULAR_RESIDUE(N,M) returns a residue in modular algebra
% for number N modulus M.
%
% R = MODULAR_RESIDUE(N,M,B) allows to specify if the field is
% finite by the indicator B, which speeds up some operations.
%
% See also MODULAR_RESIDUE.

% input arguments
if nargin < 3, b = false; end

% setup
r.modulus = M;
r.residue = n;
r.isfinite = b;

end

% residue operators
function r = plus(ra,rb)

%PLUS Addition of residues.
%
% See also MODULAR_RESIDUE.

% error check
if ~isscalar(ra) && ~isscalar(rb) && ~isequal(size(ra),size(rb))

error('Inconsistent operand dimensions.')
end
if isa(ra,'modular_residue') && isa(rb,'modular_residue') && ra.modulus ~= rb.modulus

error('Operand modulus must be the same.')
end

% minus operation
if isa(ra,'modular_residue') && isa(rb,'modular_residue')

r = modular_residue(ra.residue+rb.residue,ra.modulus,ra.isfinite);
elseif isa(ra,'modular_residue')

r = modular_residue(ra.residue+rb,ra.modulus,ra.isfinite);
else

r = modular_residue(ra+rb.residue,rb.modulus,rb.isfinite);
end

end

function r = minus(ra,rb)

38

%MINUS Subtraction of residues.
%
% See also MODULAR_RESIDUE.

% error check
if ~isscalar(ra) && ~isscalar(rb) && ~isequal(size(ra),size(rb))

error('Inconsistent operand dimensions.')
end
if isa(ra,'modular_residue') && isa(rb,'modular_residue') && ra.modulus ~= rb.modulus

error('Operand modulus must be the same.')
end

% minus operation
if isa(ra,'modular_residue') && isa(rb,'modular_residue')

r = modular_residue(ra.residue-rb.residue,ra.modulus,ra.isfinite);
elseif isa(ra,'modular_residue')

r = modular_residue(ra.residue-rb,ra.modulus,ra.isfinite);
else

r = modular_residue(ra-rb.residue,rb.modulus,rb.isfinite);
end

end

function r = uplus(r)
%UPLUS Unary addition of residues.
%
% See also MODULAR_RESIDUE.

end

function r = uminus(r)
%UMINUS Unary subtraction of residues.
%
% See also MODULAR_RESIDUE.

% unary minus operation
r = modular_residue(-r.residue,r.modulus,r.isfinite);

end

function r = times(ra,rb)
%TIMES Multiplication of residues.
%
% See also MODULAR_RESIDUE.

% error check
if ~isscalar(ra) && ~isscalar(rb) && ~isequal(size(ra),size(rb))

error('Inconsistent operand dimensions.')
end
if isa(ra,'modular_residue') && isa(rb,'modular_residue') && ra.modulus ~= rb.modulus

error('Operand modulus must be the same.')
end

% multiplication of residues
if isa(ra,'modular_residue') && isa(rb,'modular_residue')

r = modular_residue(ra.residue.*rb.residue,ra.modulus,ra.isfinite);
elseif isa(ra,'modular_residue')

r = modular_residue(ra.residue.*rb,ra.modulus,ra.isfinite);
else

r = modular_residue(ra.*rb.residue,rb.modulus,rb.isfinite);
end

end

function r = mtimes(ra,rb)
%MTIMES Matrix multiplication of residues.
%

39

% See also MODULAR_RESIDUE.

% error check
if ~isscalar(ra) && ~isscalar(rb) && size(ra,2)~=size(rb,1)

error('Inconsistent operand dimensions.')
end
if isa(ra,'modular_residue') && isa(rb,'modular_residue') && ra.modulus ~= rb.modulus

error('Operand modulus must be the same.')
end

% matrix multiplication of residues
if isa(ra,'modular_residue') && isa(rb,'modular_residue')

r = modular_residue(ra.residue*rb.residue,ra.modulus,ra.isfinite);
elseif isa(ra,'modular_residue')

r = modular_residue(ra.residue*rb,ra.modulus,ra.isfinite);
else

r = modular_residue(ra*rb.residue,rb.modulus,rb.isfinite);
end

end

function r = rdivide(ra,rb)
%RDIVIDE Right division of residues.
%
% See also MODULAR_RESIDUE.

% error check
if ~isscalar(ra) && ~isscalar(rb) && ~isequal(size(ra),size(rb))

error('Inconsistent operand dimensions.')
end
if isa(ra,'modular_residue') && isa(rb,'modular_residue') && ra.modulus ~= rb.modulus

error('Operand modulus must be the same.')
end

% right division of intervals
if isa(ra,'modular_residue') && isa(rb,'modular_residue')

M = ra.modulus;
b = ra.isfinite;
ra = ra.residue;
rb = rb.residue;

elseif isa(ra,'modular_residue')
M = ra.modulus;
b = ra.isfinite;
ra = ra.residue;

else
M = rb.modulus;
b = rb.isfinite;
rb = rb.residue;

end

% Euclidean algorithm
rbi = [zeros(numel(rb),1), ones(numel(rb),1)];
rmi = [repmat(M,numel(rb),1), rb(:)]; % Euclidean expansion of modulus
in = find(rmi(:,2));
while ~isempty(in)

% Euclidean expansion
q = floor(rmi(in,1)./rmi(in,2)); % quotient
rbi(in,:) = [rbi(in,2), rbi(in,1)-q.*rbi(in,2)];
rmi(in,:) = [rmi(in,2), rmi(in,1)-q.*rmi(in,2)];
in = in(rmi(in,2)>0);

end
if ~all(rmi(:,1)==1 | rmi(:,1)==M)

error('Divisor and modulus must be coprime.')
end

40

r = ra.*modular_residue(reshape(rbi(:,1),size(rb)),M,b);
end

function r = ldivide(ra,rb)
%LDIVIDE Left division of residues.
%
% See also MODULAR_RESIDUE.

% symmetrical case
r = rb ./ ra;

end

function r = mrdivide(ra,rb)
%MRDIVIDE Matrix right division of residues.
%
% See also MODULAR_RESIDUE.

% matrix right division
r = rb \ ra;

end

function r = mldivide(ra,rb)
%MLDIVIDE Matrix left division of residues.
%
% See also MODULAR_RESIDUE.

% error check
if ~ismatrix(ra)

error('Divisor must be a matrix.');
end
if ~ismatrix(rb)

error('Dividend must be a matrix.');
end
if ~isscalar(ra) && ~isscalar(rb) && size(ra,1)~=size(rb,1)

error('Inconsistent operand dimensions.')
end
if ~isscalar(ra) && isscalar(rb)

error('Matrix dimensions must agree.');
end
if isa(ra,'modular_residue') && isa(rb,'modular_residue') && ra.modulus ~= rb.modulus

error('Operand modulus must be the same.')
end
if ~isa(ra,'modular_residue'), ra = modular_residue(ra,rb.modulus,rb.isfinite); end
if ~isa(rb,'modular_residue'), rb = modular_residue(rb,ra.modulus,ra.isfinite); end

% special cases
if ra.modulus==1, r = modular_residue(zeros(size(ra,2),size(rb,2)),1,true); return, end
if isscalar(ra), r = rb./ra; return, end

% matrix left division
na = size(ra,2); % number of columns in operator A
nb = size(rb,2); % number of columns in operator B
n = na + nb; % number of columns
m = size(ra,1); % number of rows
T = [ra,rb]; % tableau

% Gaussian elimination
s = 1:m; % row sorting vector
for i = 1:m

[~,imax] = max(subsref(T,substruct('()',{s(i:m),i}))); % pivot row
s([i, i+imax-1]) = s([i+imax-1, i]); % swap pivot to current row
Ts = subsref(T,substruct('()',{s(i),i+1:n}))/...

subsref(T,substruct('()',{s(i),i})); % normalize pivot row

41

T.residue(s(i),i+1:n) = Ts.residue;
Ts = subsref(T,substruct('()',{s(i+1:m),i:n})) - ...

subsref(T,substruct('()',{s(i+1:m),i}))*...
subsref(T,substruct('()',{s(i),i:n})); % normalize ramaining rows

T.residue(s(i+1:m),i:n) = Ts.residue;
end

% backward substitution
for i = m-1:-1:1

Ts = subsref(T,substruct('()',{s(i),na+1:n})) - ...
subsref(T,substruct('()',{s(i),i+1:m}))*...
subsref(T,substruct('()',{s(i+1:m),na+1:n}));

T.residue(s(i),na+1:n) = Ts.residue;
end
r = [subsref(T,substruct('()',{s,na+1:n})); zeros(na-m,nb)];

end

function r = power(ra,rb)
%POWER Exponentiation of residues.
%
% See also MODULAR_RESIDUE.

% error check
if ~isscalar(ra) && ~isscalar(rb) && ~isequal(size(ra),size(rb))

error('Inconsistent operand dimensions.')
end
if isa(ra,'modular_residue') && isa(rb,'modular_residue') && ra.modulus ~= rb.modulus

error('Operand modulus must be the same.')
end

% power of residues
if isa(ra,'modular_residue') && isa(rb,'modular_residue')

M = ra.modulus;
b = ra.isfinite;
a = ra.residue;
e = rb.residue;

elseif isa(ra,'modular_residue')
M = ra.modulus;
b = ra.isfinite;
a = ra.residue;
e = rb;

else
M = rb.modulus;
b = rb.isfinite;
a = rem(ra,M);
in = find(a < 0);
a(in) = a(in) + M;
e = rb.residue;

end
if isscalar(a), a = repmat(a,size(e)); end
if isscalar(e), e = repmat(e,size(a)); end
r = ones(size(a));
ar = a;
er = e;
if b

r = rem(a.^rem(e,M-1),M);
else

while any(er > 0)
iodd = find(rem(er,2));
r(iodd) = rem(r(iodd).*ar(iodd),M);
ar = rem(ar.*ar,M);
er = floor(er/2);

42

end
r(~a & ~e) = 1;

end
r = modular_residue(r,M,b);

end

function B = lt(ra,rb)
%LT Less than comparison of residues.
%
% See also MODULAR_RESIDUE.

% error check
if ~isscalar(ra) && ~isscalar(rb) && ~isequal(size(ra),size(rb))

error('Inconsistent operand dimensions.')
end
if isa(ra,'modular_residue') && isa(rb,'modular_residue') && ra.modulus ~= rb.modulus

error('Operand modulus must be the same.')
end

% less than comparison of residues
if isa(ra,'modular_residue') && isa(rb,'modular_residue')

B = ra.residue < rb.residue;
elseif isa(ra,'modular_residue')

B = ra.residue < rb;
else

B = ra < rb.residue;
end

end

function B = gt(ra,rb)
%GT Greater than comparison of residues.
%
% See also MODULAR_RESIDUE.

% error check
if ~isscalar(ra) && ~isscalar(rb) && ~isequal(size(ra),size(rb))

error('Inconsistent operand dimensions.')
end
if isa(ra,'modular_residue') && isa(rb,'modular_residue') && ra.modulus ~= rb.modulus

error('Operand modulus must be the same.')
end

% greater than of residues
if isa(ra,'modular_residue') && isa(rb,'modular_residue')

B = ra.residue > rb.residue;
elseif isa(ra,'modular_residue')

B = ra.residue > rb;
else

B = ra > rb.residue;
end

end

function B = le(ra,rb)
%LE Less than or equal comparison of residues.
%
% See also MODULAR_RESIDUE.

% error check
if ~isscalar(ra) && ~isscalar(rb) && ~isequal(size(ra),size(rb))

error('Inconsistent operand dimensions.')
end
if isa(ra,'modular_residue') && isa(rb,'modular_residue') && ra.modulus ~= rb.modulus

error('Operand modulus must be the same.')

43

end

% less or equal to comparison of residues
if isa(ra,'modular_residue') && isa(rb,'modular_residue')

B = ra.residue <= rb.residue;
elseif isa(ra,'modular_residue')

B = ra.residue <= rb;
else

B = ra <= rb.residue;
end

end

function B = ge(ra,rb)
%GE Greater than or equal comparison of residues.
%
% See also MODULAR_RESIDUE.

% error check
if ~isscalar(ra) && ~isscalar(rb) && ~isequal(size(ra),size(rb))

error('Inconsistent operand dimensions.')
end
if isa(ra,'modular_residue') && isa(rb,'modular_residue') && ra.modulus ~= rb.modulus

error('Operand modulus must be the same.')
end

% greater or equal to comparison of residues
if isa(ra,'modular_residue') && isa(rb,'modular_residue')

B = ra.residue >= rb.residue;
elseif isa(ra,'modular_residue')

B = ra.residue >= rb;
else

B = ra >= rb.residue;
end

end

function B = eq(ra,rb)
%EQ Equality comparison of residues.
%
% See also MODULAR_RESIDUE.

% error check
if ~isscalar(ra) && ~isscalar(rb) && ~isequal(size(ra),size(rb))

error('Inconsistent operand dimensions.')
end
if isa(ra,'modular_residue') && isa(rb,'modular_residue') && ra.modulus ~= rb.modulus

error('Operand modulus must be the same.')
end

% equal comparison of residues
if isa(ra,'modular_residue') && isa(rb,'modular_residue')

B = ra.residue == rb.residue;
elseif isa(ra,'modular_residue')

B = ra.residue == rb;
else

B = ra == rb.residue;
end

end

function B = ne(ra,rb)
%NE Not equal comparison of residues.
%
% See also MODULAR_RESIDUE.

44

% error check
if ~isscalar(ra) && ~isscalar(rb) && ~isequal(size(ra),size(rb))

error('Inconsistent operand dimensions.')
end
if isa(ra,'modular_residue') && isa(rb,'modular_residue') && ra.modulus ~= rb.modulus

error('Operand modulus must be the same.')
end

% not equal comparison of residues
if isa(ra,'modular_residue') && isa(rb,'modular_residue')

B = ra.residue ~= rb.residue;
elseif isa(ra,'modular_residue')

B = ra.residue ~= rb;
else

B = ra ~= rb.residue;
end

end

function r = transpose(r)
%TRANSPOSE Transpose of residues.
%
% See also MODULAR_RESIDUE.

% error check
if ~ismatrix(r), error('Residue must be a matrix.'), end

% transpose operation
r.residue = r.residue.';

end

function r = ctranspose(r)
%CTRANSPOSE Complex conjugate transpose of residues.
%
% See also MODULAR_RESIDUE.

% error check
if ~ismatrix(r), error('Residue must be a matrix.'), end

% transpose operation
r.residue = r.residue';

end

function r = horzcat(varargin)
%HORZCAT Horizontal concatenation of residues.
%
% See also MODULAR_RESIDUE.

% horizontal concatenation
rs = cell(nargin,1);
M = [];
b = false;
for i = 1:nargin

if isa(varargin{i},'modular_residue')
rs{i} = varargin{i}.residue;
if isempty(M)

M = varargin{i}.modulus;
b = varargin{i}.isfinite;

elseif M ~= varargin{i}.modulus
error('Inconsistent modulus.')

end
elseif isnumeric(varargin{i})

rs{i} = varargin{i};
else

45

error('Invalid value for concatenation.')
end

end
r = modular_residue(horzcat(rs{:}),M,b);

end

function r = vertcat(varargin)
%VERTCAT Vertical concatenation of residues.
%
% See also MODULAR_RESIDUE.

% vertical concatenation
rs = cell(nargin,1);
M = [];
b = false;
for i = 1:nargin

if isa(varargin{i},'modular_residue')
rs{i} = varargin{i}.residue;
if isempty(M)

M = varargin{i}.modulus;
b = varargin{i}.isfinite;

elseif M ~= varargin{i}.modulus
error('Inconsistent modulus.')

end
elseif isnumeric(varargin{i})

rs{i} = varargin{i};
else

error('Invalid value for concatenation.')
end

end
r = modular_residue(vertcat(rs{:}),M,b);

end

function n = numArgumentsFromSubscript(varargin)
n = 1;

end

function r = subsref(r,s)
%SUBSREF Subscripted interval reference of residues.
%
% See also MODULAR_RESIDUE.

% subscripted residue reference
for is = 1:length(s)

if s(is).type == '.'
r = r.(s(is).subs);

else
if isa(r,'modular_residue')

r = modular_residue(subsref(r.residue,s(is)),r.modulus,r.isfinite);
else

r = subsref(r,s(is));
end

end
end

end

function ind = end(r,k,~)
ind = size(r.residue,k);

end

function r = subsasgn(r,s,rs)
%SUBSREF Subscripted interval assignment of residues.
%

46

% See also MODULAR_RESIDUE.

% error check
if ~isa(rs,'modular_residue') && ~isnumeric(rs)

error('Invalid value for residues.')
end
if isa(rs,'modular_residue') && r.modulus ~= rs.modulus

error('Modulus must agree.')
end

% subscripted residue assignment
if (numel(s) == 1) && isequal(s(1).type, '()')

if isa(rs,'modular_residue')
r.residue(s.subs{:}) = rs.residue;

else
ri = rem(rs,r.modulus);
in = find(ri < 0);
ri(in) = ri(in) + r.modulus;
r.residue(s.subs{:}) = ri;

end
elseif (numel(s) == 2) && isequal(s(1).type, '.')

r.(s(1).subs)(s(2).subs{:}) = rs;
end

end

% residue functions
function r = sum(r,varargin)

%SUM Sum of residues.
%
% See also MODULAR_RESIDUE.

% sum of residues
r.residue = rem(sum(r.residue,varargin{:}),r.modulus);

end

function r = cumsum(r,varargin)
%CUMSUM Cumulative sum of residues.
%
% See also MODULAR_RESIDUE.

% cumulative sum of residues
r.residue = rem(cumsum(r.residue,varargin{:}),r.modulus);

end

function r = reshape(r,varargin)
%RESHAPE Resize of residues.
%
% See also MODULAR_RESIDUE.

% resize of residues
r.residue = reshape(r.residue,varargin{:});

end

function varargout = size(r,varargin)
%SIZE Size of residues.
%
% See also MODULAR_RESIDUE.

% size of residues
varargout = cell(1,max(1,nargout));
[varargout{:}] = size(r.residue,varargin{:});

end

47

function s = length(r)
%LENGTH Length of residues.
%
% See also MODULAR_RESIDUE.

% length of residues
s = length(r.residue);

end

function s = numel(r,varargin)
%NUMEL Number of residues.
%
% See also MODULAR_RESIDUE.

% number of residues
s = numel(r.residue,varargin{:});

end

function r = repmat(r,varargin)
%REPMAT Repetition of residues.
%
% See also MODULAR_RESIDUE.

% repetition of residues
r.residue = repmat(r.residue,varargin{:});

end

function b = isnan(r)
%ISNAN Check whether residue is not a number.
%
% See also MODULAR_RESIDUE.

% not a number residue indicator
b = isnan(r.residue);

end

function b = isinf(r)
%ISINF Check whether residue is infinite.
%
% See also MODULAR_RESIDUE.

% infinite residue indicator
b = isinf(r.residue);

end

function b = isempty(r)
%ISEMPTY Check whether residue is empty.
%
% See also MODULAR_RESIDUE.

% empty residue indicator
b = isempty(r.residue);

end

function b = isscalar(r)
%ISSCALAR Check whether residue is scalar.
%
% See also MODULAR_RESIDUE.

% scalar residue indicator
b = isscalar(r.residue);

end

48

function b = iscolumn(r)
%ISCOLUMN Check whether residue is a column vector.
%
% See also MODULAR_RESIDUE.

% column residue indicator
b = iscolumn(r.residue);

end

function b = isrow(r)
%ISROW Check whether residue is a row vector.
%
% See also MODULAR_RESIDUE.

% row residue indicator
b = isrow(r.residue);

end

function b = isvector(r)
%ISVECTOR Check whether residue is a vector.
%
% See also MODULAR_RESIDUE.

% vector residue indicator
b = isvector(r.residue);

end

function b = ismatrix(r)
%ISMATRIX Check whether residue is a matrix.
%
% See also MODULAR_RESIDUE.

% matrix residue indicator
b = ismatrix(r.residue);

end

function b = isnumeric(~)
%ISNUMERIC Check whether residue is numeric.
% Always returns true.
%
% See also MODULAR_RESIDUE.

% numeric indicator
b = true;

end

function [r,i] = min(r,varargin)
%MINIMUM Minimum of residues.
%
% See also MODULAR_RESIDUE.

% error check
if (nargin >= 2) && ~isscalar(r) && ~isscalar(varargin{1}) && ...

~isequal(size(r),size(varargin{1}))
error('Inconsistent operand dimensions.')

end
if isa(r,'modular_residue') && isa(varargin{1},'modular_residue') && ...

r.modulus ~= varargin{1}.modulus
error('Operand modulus must be the same.')

end

% minimum of residues
if (nargin >= 2) && ~isempty(varargin{1})

49

if isa(varargin{1},'modular_residue')
[r.residue,i] = min(r.residue,varargin{1}.residue,varargin{2:end});

elseif isnumeric(varargin{1})
[r.residue,i] = min(r.residue,varargin{:});

else
error('Invalid second operand.')

end
else

[r.residue,i] = min(r.residue,varargin{:});
end

end

function [r,i] = max(r,varargin)
%MAXIMUM Maximum of residues.
%
% See also MODULAR_RESIDUE.

% error check
if (nargin >= 2) && ~isscalar(r) && ~isscalar(varargin{1}) && ...

~isequal(size(r),size(varargin{1}))
error('Inconsistent operand dimensions.')

end
if (nargin >= 2) && isa(r,'modular_residue') && isa(varargin{1},'modular_residue') && ...

r.modulus ~= varargin{1}.modulus
error('Operand modulus must be the same.')

end

% maximum of residues
if (nargin >= 2) && ~isempty(varargin{1})

if isa(varargin{1},'modular_residue')
[r.residue,i] = max(r.residue,varargin{1}.residue,varargin{2:end});

elseif isnumeric(varargin{1})
[r.residue,i] = max(r.residue,varargin{:});

else
error('Invalid second operand.')

end
else

[r.residue,i] = max(r.residue,varargin{:});
end

end

function r = cat(d,varargin)
%CAT Concatenation of modular residues.
%
% See also MODULAR_RESIDUE.

% error check
if nargin < 2, error('No enough input arguments.'), end

% concatenation
r = varargin{1}.residue;
for i = 2:nargin-1

if varargin{i}.modulus ~= varargin{1}.modulus
error('Inconsistent modulus.')

end
r = cat(d,varargin{i}.residue);

end
r = modular_residue(r,varargin{1}.modulus);

end

function r = permute(r,dp)
%PERMUTE Permute dimensions.
%

50

% See also MODULAR_RESIDUE.

% permutation
r.residue = permute(r.residue,dp);

end

function r = abs(r)
%ABS Absolute value.
%
% See also MODULAR_RESIDUE.

% absolute value
end

function r = floor(r)
%FLOOR Floor value.
%
% See also MODULAR_RESIDUE.

% floor value
end

function r = ceil(r)
%CEIL Ceil value.
%
% See also MODULAR_RESIDUE.

% ceil value
end

function r = round(r)
%ROUND Rounded off value.
%
% See also MODULAR_RESIDUE.

% rounded off value
end

function n = nnz(r)
%NNZ Number of non zeros.
%
% See also MODULAR_RESIDUE.

% non zeros count
n = nnz(r.residue);

end

function disp(r)
%DISP Display of residues.
%
% See also MODULAR_RESIDUE.

% display of residues
disp(r.residue)
fprintf('mod %d\n',r.modulus)

end
end

end

51

52

Index

algorithm

Euclidean, 16

artificial intelligence

model, 7

recurrent, 10

training, 7

modular polynomial, 8

vector modular polynomial, 11, 12

code

Matlab

modular artificial intelligence, 31

Pyhon

modular artificial intelligence, 17

error

measure

least squares, 8

finite field, 8

modular algebra, 8, 16

notation

Einstein, 13

parameter, 7

parameterization

modular polynomial, 8

modular polynomial convolution, 13

tight, 7

universal, 7

set

consistent sample, 7

space

polynomial, 8

time series, 10

variable

continuous, 9

recurrent, 10

tensor, 13

uncertain, 13

vector, 10

53

54

© 2026 GAIA

	Updates
	Contents
	1 Introduction
	2 Artificial intelligence
	2.1 Model
	2.2 Training

	3 Tight universal parameterization
	3.1 Basic problem statement
	3.2 Modular polynomial
	3.2.1 Training
	3.2.1.1 Complexity analysis
	3.2.1.2 Continuous input and output
	3.2.1.3 Recurrent input and output
	3.2.1.4 Vector input and output
	3.2.1.5 Vector modular training
	3.2.1.6 Efficient vector modular training
	3.2.1.7 Optimal vector architecture
	3.2.1.8 Tensor input and output
	3.2.1.9 Uncertain input and output
	3.2.1.10 Incomplete input and output
	3.2.1.11 Round off errors

	3.2.2 Examples
	3.2.2.1 Binary input and output
	3.2.2.2 Ternary input and output

	4 Case studies
	4.1 Fire detection
	4.1.1 Detection
	4.1.2 Segmentation

	4.2 Bus inspection
	4.2.1 Nut angle

	4.3 First language models
	4.3.1 Brazil
	4.3.2 Brazil and United States
	4.3.3 Brazil, United States, Spain and Israel

	4.4 Psychology of discourse

	A Code
	A.1 Modular artificial intelligence
	A.1.1 Python
	A.1.2 Matlab

	Index

